Skip to main content

Application of Suppressive Subtractive Hybridization to Uncover the Metagenomic Diversity of Environmental Samples

  • Protocol
Environmental Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 410))

summary

Metagenomics addresses the collective genetic structure and functional composition of a microbial environmental sample without the bias or necessity for culturing the microorganisms from the community in question. Metagenomic studies are now beginning to take advantage of the plethora of complete genome sequences (1,2) and the associated tools, such as bacterial artificial chromosome (BAC) and fosmid vectors, to discover novel genes and survey the structure and function of microbial communities. Complementary and less expensive methods to compare genomes from individual microbes have been utilized in comparative genomic studies. Suppressive subtractive hybridization (SSH) is one such approach, which has been utilized to compare the genomic content of closely related species of bacteria (36). Recently, SSH has also been used as a comparative method to examine the microbial diversity (i.e., species composition) and functional differences (i.e., gene composition) in the genomic content of two different rumen environmental communities (7). Through a series of hybridizations and polymerase chain reaction (PCR) amplifications, metagenomic differences between two environmental samples can be isolated by SSH. Subsequent DNA sequencing and bioinformatic analyses allow the putative identification of these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doolittle, R. F. (1997) Microbial genomes opened up. Nature 392, 339–42.

    Article  Google Scholar 

  2. Fraser, C. M., Eisen, J. A., and Salzberg, S. L. (2000) Microbial genome sequencing. Nature 406, 799–803.

    Article  CAS  PubMed  Google Scholar 

  3. Akopyants, N. S., Fradkov, A., Diatchenko, L., Hill, J. E., Siebert, P. D., Lukyanov, S. A., Sverdlov, E. D., and Berg, D. E. (1998) PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95, 13108–13113.

    Article  CAS  PubMed  Google Scholar 

  4. Mavrodi, D. V., Mavrodi, O. V., B., M.-G. B., Landa, B. B., Weller, D. M., and Thomashow, L. S. (2002) Identification of differences in genome content among phlD-positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization. Appl. Environ. Microbiol. 68, 5170–5176.

    Article  CAS  PubMed  Google Scholar 

  5. Nesbø , C. L., Nelson, K. E., and Doolittle, W. F. (2002) Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima. J. Bacteriol. 184, 4475–4488.

    Article  PubMed  Google Scholar 

  6. Smoot, L. M., Franke, D. D., McGillivary, G., and Actis, L. A. (2002) Genomic analysis of the F3031 Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius by PCR-based subtractive hybridization. Infect. Immun. 70, 2694–2699.

    Article  CAS  PubMed  Google Scholar 

  7. Galbraith, E. A., Antonopoulos, D. A., and White, B. A. (2004) Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ. Microbiol. 6, 928–937.

    Article  CAS  PubMed  Google Scholar 

  8. Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science 276, 734–740.

    Article  CAS  PubMed  Google Scholar 

  9. Theron, J., and Cloete, T. E. (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol. 26, 37–57.

    Article  CAS  PubMed  Google Scholar 

  10. Torsvik, V., Salte, K., Sorheim, R., and Goksoyr, J. (1990) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56, 776–781.

    CAS  PubMed  Google Scholar 

  11. Torsvik, V., Daae, F. L., Sandaa, R.-A., and Ovreas, L. (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotech. 64, 53–62.

    Article  CAS  Google Scholar 

  12. Gans, J., Wolinsky, M., and Dunbar, J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390.

    Article  CAS  PubMed  Google Scholar 

  13. Rondon, M. R., August, P. R., Betterman, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., et al. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547.

    Article  CAS  PubMed  Google Scholar 

  14. Bèjá, O., Suzuki, M. T., Koonin, E. V., Aravind, L., Hadd, A., Nguyen, L. P., Villacorta, R., Amjadi, M., Garrigues, C., Jovanovich, S. B., Feldman, R. A., and DeLong, E. F. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516–529.

    Article  PubMed  Google Scholar 

  15. DeLong, E. F. (2002) Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524.

    Article  PubMed  Google Scholar 

  16. Bautz, E. K., and Reilly, E. (1966) Gene-specific messenger RNA: isolation by the deletion method. Science 151, 328–330.

    Article  CAS  PubMed  Google Scholar 

  17. Kunkel, L. M., Monaco, A. P., Middlesworth, W., Ochs, H. D., and Latt, S. A. (1985) Specific cloning of DNA fragments absent from the DNA of a male patient with and X chromosome deletion. Proc. Natl. Acad. Sci. USA 82, 4778–4782.

    Article  CAS  PubMed  Google Scholar 

  18. Lamar, E. E., and Palmer, E. (1984) Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell 37, 171–177.

    Article  CAS  PubMed  Google Scholar 

  19. Nussbaum, R. L., Lesko, J. G., Lewis, R. A., Ledbetter, S. A., and Ledbetter, D. H. (1987) Isolation of anonymous DNA sequences from within a submicroscopic X chromosomal deletion in a patient with choroideremia, deafness, and mental retardation. Proc. Natl. Acad. Sci. USA 84, 6521–6525.

    Article  CAS  PubMed  Google Scholar 

  20. Straus, D. and Ausubel, F. M. (1990) Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. USA 87, 1889–1893.

    Article  CAS  PubMed  Google Scholar 

  21. Wieland, I., Bolger, G., Asouline, G., and Wigler, M. (1990) A method for difference cloning: gene amplification following subtractive hybridization. Proc. Natl. Acad. Sci. USA 87, 2720–2724.

    Article  CAS  PubMed  Google Scholar 

  22. Duguid, J. R., and Dinauer, M. C. (1990) Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res. 18, 2789–2792.

    Article  CAS  PubMed  Google Scholar 

  23. Cecchini, E., Dominy, P. J., Geri, C., Kaiser, K., Sentry, J., and Milner, J. J. (1993) Identification of genes up-regulated in dedifferentiating Nicotania glauca pith tissue, using an improved method for constructing a subtractive cDNA library. Nucleic Acids Res. 21, 5742–5747.

    Article  CAS  PubMed  Google Scholar 

  24. Hubank, M., and Schatz, D. G. (1999) cDNA representational difference analysis: a sensitive and flexible method for identification of differentially expressed genes. Methods Enzymol. 303, 325–349.

    Article  CAS  PubMed  Google Scholar 

  25. Ji, W., Wright, M. B., Cai, L., Flament, A., and Lindpaintner, K. (2002) Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics 3, 12.

    Article  PubMed  Google Scholar 

  26. Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., and Siebert, P. D. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  CAS  PubMed  Google Scholar 

  27. Ermolaeva, O. D. and Wagner, M. C. (1995) SUBTRACT: a computer program for modeling the process of subtractive hybridization. CABIOS 11, 457–462.

    CAS  PubMed  Google Scholar 

  28. Ermolaeva, O. D., Lukyanov, S. A., and Sverdlov, E. D. (1996) The mathematical model of subtractive hybridization and its practical application. Proc. Int. Conf. Intell. Syst. Mol. Biol. 4, 52–58.

    CAS  PubMed  Google Scholar 

  29. Ermolaeva, O. D., and Sverdlov, E. D. (1996) Subtractive hybridization, a technique for extraction of DNA sequences distinguishing two closely related genomes: critical analysis. Genet. Anal. 13, 49–58.

    CAS  PubMed  Google Scholar 

  30. Emmerth, M., Goebel, W., Miller, S. I., and Hueck, C. J. (1999) Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J. Bacteriol. 181, 5652–5661.

    CAS  PubMed  Google Scholar 

  31. Ferreira, H., Rodrigues Neto, J., Goncalves, E. R., and Rosato, Y. B. (1999) A simplified subtractive hybridization protocol used to isolate DNA sequences specific to Xylella fastidiosa. Microbiology 145, 1967–1975.

    Article  CAS  PubMed  Google Scholar 

  32. Sawada, K., Kokeguchi, S., Hongyo, H., Sawada, S., Miyamoto, M., Maeda, H., Nishimura, F., Takashiba, S., and Murayama, Y. (1999) Identification by subtractive hybridization of a novel insertion sequence specific for virulent strains of Porphyromonas gingivalis. Infect. Immun. 67, 5621–5625.

    CAS  PubMed  Google Scholar 

  33. Vinnemeier, J., and Hagemann, M. (1999) Identification of salt-regulated genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 by subtractive RNA hybridization. Arch. Microbiol. 172, 377–386.

    Article  CAS  PubMed  Google Scholar 

  34. Lai, Y. C., Yang, S. L., Peng, H. L., and Chang, H. Y. (2000) Identification of genes present specifically in a virulent strain of Klebsiella pneumoniae. Infect. Immun. 68, 7149–7151.

    Article  CAS  PubMed  Google Scholar 

  35. Agron, P. G., Walker, R. L., Kinde, H., Sawyer, S. J., Hayes, D. C., Wollard, J., and Andersen, G. L. (2001) Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar enteritidis. Appl. Environ. Microbiol. 67, 4984–4991.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed, I. H., Manning, G., Wassenaar, T. M., Cawthraw, S., and Newell, D. G. (2002) Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology 148, 1203–1212.

    CAS  PubMed  Google Scholar 

  37. Herd, M., and Kocks, C. (2001) Gene fragments distinguishing an epidemic-associated strain from a virulent prototype strain of Listeria monocytogenes belong to a distinct functional subset of genes and partially cross-hybridize with other Listeria species. Infect Immun 69, 3972–3979.

    Article  CAS  PubMed  Google Scholar 

  38. Pettigrew, M. M., Foxman, B., Marrs, C. F., and Gilsdorf, J. R. (2002) Identification of the lipooligosaccharide biosynthesis gene lic2B as a putative virulence factor in strains of nontypeable Haemophilus influenzae that cause otitis media. Infect. Immun. 70, 3551–3556.

    Article  CAS  PubMed  Google Scholar 

  39. Pradel, N., Leroy-Setrin, S., Joly, B., and Livrelli, V. (2002) Genomic subtraction to identify and characterize sequences of Shiga toxin-producing Escherichia coli O91:H21. Appl. Environ. Microbiol. 68, 2316–2325.

    Article  CAS  PubMed  Google Scholar 

  40. Parsons, Y. N., Banasko, R., Detsika, M. G., Duangsonk, K., Rainbow, L., Hart, C. A., and Winstanley, C. (2003) Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch. Microbiol. 179, 214–223.

    CAS  PubMed  Google Scholar 

  41. Nesbø, C. L., and Doolittle, W. F. (2003) Targeting clusters of transferred genes in Thermotoga maritima. Environ. Microbiol. 5, 1144–1154.

    Article  PubMed  Google Scholar 

  42. Antonopoulos, D. A., Nelson, K. E., Morrison, M., and White, B. A. (2004) Strain specific genomic regions of Ruminococcus flavefaciens FD-1 as revealed by combinatorial random-phase genome sequencing and suppressive subtractive hybridization. Environ. Microbiol. 6, 335–346.

    Article  CAS  PubMed  Google Scholar 

  43. Frohme, M., Camargo, A. A., Czink, C., Matsukuma, A. Y., Simpson, A. J., Hoheisel, J. D., and Verjovski-Almeida, S. (2001) Directed gap closure in large-scale sequencing projects. Genome Research 11, 901–903.

    Article  CAS  PubMed  Google Scholar 

  44. Kocherginskaya, S. A., Aminov, R. I., and White, B. A. (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7, 119–134.

    Article  CAS  Google Scholar 

  45. Hungate, R. E. (1966) The Rumen and its Microbes. Academic Press, New York and London. pp. 8–11, 32–80, 91–124.

    Google Scholar 

  46. Hespell, R. B., Akin, D. E., and Dehority, B. A. (1997) Bacteria, fungi, and protozoa of the rumen, in Gastrointestinal Microbiology (Mackie, R. I., White, B. A., and Isaacson, R. E., eds.), Vol. II, Chapman and Hall, New York, pp. 59–141.

    Google Scholar 

  47. Raskin, L., Stromley, J. M., Rittmann, B. E., and Stahl, D. A. (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240.

    CAS  PubMed  Google Scholar 

  48. White, B. A., Cann, I. K. O., Kocherginskaya, S. A., Aminov, R. I., Thill, L. A., Mackie, R. I., and Onodera, R. (1999) Molecular analysis of Archaea, Bacteria, and Eucarya communities in the rumen. Asian-Australasian J. Anim. Sci. 12, 129–138.

    Google Scholar 

  49. Tsai, Y., and Olson, B. H. (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070–1074.

    CAS  PubMed  Google Scholar 

  50. 50. Rebrikov, D. V., Desai, S. M., Siebert, P. D., Lukyanov, S. A. (2004) Suppression Subtractive Hybridization, in Methods in Molecular Biology, Vol. 258 Gene Expression Profiling (Shimkets, R. A., ed.), Humana Press, Totowa, NJ, pp. 107–134.

    Chapter  Google Scholar 

  51. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. E. (2001) Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York.

    Book  Google Scholar 

  52. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L. (1988) The use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 1079–1084.

    CAS  PubMed  Google Scholar 

  53. Lin, C., Raskin, L., and Stahl, D. A. (1997) Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiol. Ecol. 22, 281–294.

    Article  CAS  Google Scholar 

  54. D’Aquila, R. T., Bechtel, L. J., Videler, J. A., Eron, J. J., Gorczyca, P., and Kaplan, J. C. (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 19, 3749.

    Article  PubMed  Google Scholar 

  55. Kellogg, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P. D., and Chenchik, A. (1994) TaqStart Antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques 16, 1134–1137.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA NRI grant no. 970–326, and by the Agricultural Experimental Station of the University of Illinois. The authors gratefully acknowledge Professor Adrian Egan of the University of Melbourne for spawning this idea at the RRI-INRA meeting in Aberdeen, Scotland.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galbraith, E.A., Antonopoulos, D.A., White, B.A. (2008). Application of Suppressive Subtractive Hybridization to Uncover the Metagenomic Diversity of Environmental Samples. In: Martin, C.C., Martin, C.C. (eds) Environmental Genomics. Methods in Molecular Biology, vol 410. Humana Press. https://doi.org/10.1007/978-1-59745-548-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-548-0_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-777-8

  • Online ISBN: 978-1-59745-548-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics