Skip to main content

From Promoter Analysis to Transcriptional Regulatory Network Prediction Using PAINT

  • Protocol
Book cover Gene Function Analysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 408))

Abstract

Highly parallel gene-expression analysis has led to analysis of gene regulation, in particular coregulation, at a system level. Promoter analysis and interaction network toolset (PAINT) was developed to provide the biologist a computational tool to integrate functional genomics data, for example, from microarray-based gene-expression analysis with genomic sequence data to carry out transcriptional regulatory network analysis (TRNA). TRNA combines bioinformatics, used to identify and analyze gene-regulatory regions, and statistical significance testing, used to rank the likelihood of the involvement of individual transcription factors (TF), with visualization tools to identify TF likely to play a role in the cellular process under investigation. In summary, given a list of gene identifiers PAINT can: (1) fetch potential promoter sequences for the genes in the list, (2) find TF-binding sites on the sequences, (3) analyze the TF-binding site occurrences for over/underrepresentation compared with a reference, with or without coexpression clustering information, and (4) generate multiple visualizations for these analyses. At present, PAINT supports TRNA of the human, mouse, and rat genomes. PAINT is currently available as an online, web-based service located at: http://www.dbi.tju.edu/dbi/tools/paint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  CAS  PubMed  Google Scholar 

  2. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  CAS  PubMed  Google Scholar 

  3. Okubo, K., Hori, N., Matoba, R., et al. (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat. Genet. 2, 173–179.

    Article  CAS  PubMed  Google Scholar 

  4. Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  5. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  6. Hughes, T. R., Mao, M., Jones, A. R., et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.

    Article  CAS  PubMed  Google Scholar 

  7. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., and Church, G. (2002) Automated modeling of signal transduction networks. BMC Bioinformatics 3, 34.

    Article  PubMed  Google Scholar 

  8. Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233–S240.

    PubMed  Google Scholar 

  9. Zak, D. E., Doyle, F. J., III., Gonye, G. E., and Schwaber, J. S. (2001) Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data. Proc. Second Int. Conf. Syst. Biol. 231–238.

    Google Scholar 

  10. Zak, D. E., Gonye, G. E., Schwaber, J. S., and Doyle, F. J., III. (2003) Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from the identifiability analysis of an in silico network. Genome Res. 13, 2396–2405.

    Article  CAS  PubMed  Google Scholar 

  11. Vadigepalli, R., Chakravarthula, P., Zak, D. E., Schwaber, J. S., and Gonye, G. E. (2003) PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification. Omics 7, 235–252.

    Article  CAS  PubMed  Google Scholar 

  12. Vadigepalli, R., Hao, H., Miller, G. M., Liu, H., and Schwaber, J. S. (2006) EGFR-induced circadian-time dependent gene regulation in suprachiasmatic nucleus. Neuroreport 17(13), 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  13. Addya, S., Keller, M. A., Delgrosso, K., et al. (2004) Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements. Physiol. Genomics 19, 117–130.

    Article  CAS  PubMed  Google Scholar 

  14. Pratt, C., Vadigepalli, R., Chakravarthula, P., Gonye, G. E., Philip, N. J., and Grunwald, G. B. (2007) Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium. Molecular Vision (in press).

    Google Scholar 

  15. Stevens, S. L., Gopalan, B., Minami, M., et al. (2004) LPS preconditioning provides neuroprotection through reprogramming of cellular responses to stroke. Soc. Neurosci. Abstract 457.14.

    Google Scholar 

  16. Zak, D. E., Hao, H., Vadigepalli, R., Miller, G. M., Ogunnaike, B. O., and Schwaber, J. S. (2006) Systems analysis of circadian time dependent neuronal epidermal growth factor receptor signaling. Genome Biol. 7(6), R48.

    Article  PubMed  Google Scholar 

  17. Saban, M. R., Hellmich, H. L., Turner, M., et al. (2006) The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa. BMC Physiol. 6(1), 1.

    Article  PubMed  Google Scholar 

  18. Dozmorov, M. G., Kyker, K. D., Saban, R., et al. (2006) Analysis of the interaction of extracellular matrix and phenotype of bladder cancer cells. BMC Cancer 6, 12.

    Article  PubMed  Google Scholar 

  19. Keller, M. A., Addya, S., Vadigepalli, R., Banini, B., et al. (2006) Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of co-regulation and potential transcriptional regulators. Physiol. Genomics 28, 114–128.

    Article  CAS  PubMed  Google Scholar 

  20. Hubbard, T., Barker, D., Birney, E., et al. (2002) The Ensembl genome database project. Nucleic Acids Res. 30, 38–41.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai, J., Shinagawa, A., Shibata, K., et al. (2001) Functional annotation of fulllength mouse cDNA collection. Nature 409, 685–690.

    Article  PubMed  Google Scholar 

  22. Aerts, S., Thijs, G., Coessens, B., Staes, M., Moreau, Y., and Moor, B. D. (2003) Toucan: deciphering the cis-regulatory logic of coregulated genes. Nucleic Acids Res. 6, 1753–1764.

    Article  Google Scholar 

  23. Matys, V., Frickle, E., Geffers, R., et al. (2003) TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378.

    Article  CAS  PubMed  Google Scholar 

  24. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) MatInd and MatInspector—New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878. A web-based version of the tool is available at http://www.genomatix.de. (last accessed May 5th, 2007).

    Article  CAS  PubMed  Google Scholar 

  25. Bailey, T. L. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Second Int. Conf. Intelligent Syst. Mol. Biol. 28–36, AAAI Press, Menlo Park, California. http://meme.sdsc.edu (last accessed May 5th, 2007).

    Google Scholar 

  26. Bury, K. (1999) Statistical Distributions in Engineering. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  27. Jakt, L. M., Cao, L., Cheah, K. S., and Smith, D. K. (2001) Assessing clusters and motifs from gene expression data. Genome Res. 11(1), 112–123.

    Article  CAS  PubMed  Google Scholar 

  28. Elkon, R., Linhart, C., Sharan, R., Shamir, R., and Shiloh, Y. (2003) Genome-Wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res. 13, 773–780.

    Article  CAS  PubMed  Google Scholar 

  29. Benjamini, Y. and Hochberg, Y. (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Gonye, G.E., Chakravarthula, P., Schwaber, J.S., Vadigepalli, R. (2007). From Promoter Analysis to Transcriptional Regulatory Network Prediction Using PAINT. In: Ochs, M.F. (eds) Gene Function Analysis. Methods in Molecular Biology™, vol 408. Humana Press. https://doi.org/10.1007/978-1-59745-547-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-547-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-734-1

  • Online ISBN: 978-1-59745-547-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics