Skip to main content

Detection of Protein-Protein Interactions by Far-Western Blotting

  • Protocol
  • First Online:
Protein Blotting and Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 536))

Summary

Far-western blotting is a convenient method to characterize protein–protein interactions, in which protein samples of interest are immobilized on a membrane and then probed with a nonantibody protein. In contrast to western blotting, which uses specific antibodies to detect target proteins, far-western blotting detects proteins on the basis of the presence or the absence of binding sites for the protein probe. When specific modular protein binding domains are used as probes, this approach allows characterization of protein–protein interactions involved in biological processes such as signal transduction, including interactions regulated by posttranslational modification. We here describe a rapid and simple protocol for far-western blotting, in which GST-tagged Src homology 2 (SH2) domains are used to probe cellular proteins in a phosphorylation-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmondson, D. G., and Dent, S. Y. (2001) Identification of protein interactions by far western analysis, in: Current Protocols in Protein Science (Coligen, J. E., Ed.), Vol. 2, pp. 1–10, Wiley, Hoboken, NJ.

    Google Scholar 

  2. Hoeffler, J. P., Lustbader, J. W., and Chen, C. Y. (1991) Identification of multiple nuclear factors that interact with cyclic adenosine 3′,5′-monophosphate response element-binding protein and activating transcription factor-2 by protein–protein interactions. Mol Endocrinol 5, 256–266.

    Article  PubMed  CAS  Google Scholar 

  3. Akiyama, T., Ohuchi, T., Sumida, S., Xu, S. Q., and Toyoshima, K. (1992) Phosphorylation of the anti-oncogene products and control of the cell cycle. Tohoku J Exp Med 168, 153–157.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, R. A. (2004) Studying protein–protein interactions via blot overlay or Far western blot. Methods Mol Biol 261, 167–174.

    PubMed  CAS  Google Scholar 

  5. Cicchetti, P., Mayer, B. J., Thiel, G., and Baltimore, D. (1992) Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257, 803–806.

    Article  PubMed  CAS  Google Scholar 

  6. Macgregor, P. F., Abate, C., and Curran, T. (1990) Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1. Oncogene 5, 451–458.

    PubMed  CAS  Google Scholar 

  7. Blackwood, E. M., and Eisenman, R. N. (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  8. Nollau, P., and Mayer, B. J. (2001) Profiling the global tyrosine phosphorylation state by Src homology 2 domain binding. Proc Natl Acad Sci USA 98, 13531–13536.

    Article  PubMed  CAS  Google Scholar 

  9. Machida, K., Thompson, C. M., Dierck, K., Jablonowski, K., Karkkainen, S., Liu, B., Zhang, H., Nash, P. D., Newman, D. K., Nollau, P., Pawson, T., Renkema, G. H., Saksela, K., Schiller, M. R., Shin, D. G., and Mayer, B. J. (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26, 899–915.

    Article  PubMed  CAS  Google Scholar 

  10. Moorhead, G., and MacKintosh, C. (2004) Affinity methods for phosphorylation-dependent interactions. Methods Mol Biol 261, 469–478.

    PubMed  CAS  Google Scholar 

  11. Burnham, M. R., DeBerry, R., and Bouton, A. H. (2001) Detection of phosphorylation-dependent interactions by far-western gel overlay. Methods Mol Biol 124, 209–220.

    PubMed  CAS  Google Scholar 

  12. Einarson, M. B., and Orlinick, J. R. (2002) Identification of protein–protein interactions with glutathione-s-transferase fusion proteins, in: Protein–Protein Interactions (Golemis, E., Ed.), pp. 37–57, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  13. Smith, D. B., and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  14. Mayer, B. J., Jackson, P. K., Van Etten, R. A., and Baltimore, D. (1992) Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol 12, 609–618.

    PubMed  CAS  Google Scholar 

  15. Babon, J. J., McManus, E. J., Yao, S., DeSouza, D. P., Mielke, L. A., Sprigg, N. S., Willson, T. A., Hilton, D. J., Nicola, N. A., Baca, M., Nicholson, S. E., and Norton, R. S. (2006) The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol Cell 22, 205–216.

    Article  PubMed  CAS  Google Scholar 

  16. Lamla, T., Hoerer, S., and Bauer, M. M. (2006) Screening for soluble expression constructs using cell-free protein synthesis. Int J Biol Macromol 39, 111–121.

    Article  PubMed  CAS  Google Scholar 

  17. Welsh, M., Mares, J., Karlsson, T., Lavergne, C., Breant, B., and Claesson-Welsh, L. (1994) Shb is a ubiquitously expressed Src homology 2 protein. Oncogene 9, 19–27.

    PubMed  CAS  Google Scholar 

  18. Jones, R. B., Gordus, A., Krall, J. A., and MacBeath, G. (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to P. Nollau for his effort for the early development of the method, C. Thompson for technical assistance, K. Claffey for breast cancer samples, and A. Das for a bacterial culture system. This work was partially supported by grants from Breast Cancer Alliance and Connecticut Breast Health Initiative (to K.M.) and NIH grant CA107785 (to B.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Machida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Machida, K., Mayer, B.J. (2009). Detection of Protein-Protein Interactions by Far-Western Blotting. In: Kurien, B., Scofield, R. (eds) Protein Blotting and Detection. Methods in Molecular Biology, vol 536. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-542-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-542-8_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-73-2

  • Online ISBN: 978-1-59745-542-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics