Skip to main content

Comparative Genome Hybridization on Tiling Microarrays to Detect Aneuploidies in Yeast

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 548))

Summary

Chromosomal aberrations resulting in aneuploidies have been implicated in the development of most cancers and numerous other genetic disorders. Aneuploidies are a key feature of genomic instability, so classification of these copy number changes will be important in understanding how rearrangements arise and how ongoing instability is maintained. Traditional methods for detecting copy number changes have relatively poor resolution, making accurate detection of breakpoints impossible. The advent of microarray technology and its advance over the years has improved the ability to detect aneuploidies with greater accuracy. Mammalian comparative genome hybridization on microarrays (array-CGH) has been applied to the study of many carcinomas, identifying common copy number changes in key regions including known oncogenes. However, the large size of mammalian genomes has made it impractical to perform whole genome CGH at high resolution. Yeast has been established as a useful model for studying pathways relevant to oncogenesis, particularly those that maintain the integrity of the genome. Given the smaller size of the yeast genome, oligonucleotide tiling arrays have been developed that allow for nucleotide resolution of the whole genome on a single chip. Here we describe in detail how to use these arrays to detect copy number variations in yeast. This method will be useful in many different studies, but particularly in monitoring and cataloguing the changes resulting from genetic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., Kinzler, K. W., and Vogelstein, B. (1998). Mutations of mitotic checkpoint genes in human cancers, Nature 392, 300–303.

    Article  PubMed  CAS  Google Scholar 

  2. Lejeune, J., Gautier, M., and Turpin, R. (1959). [Study of somatic chromosomes from 9 mongoloid children.], C R Hebd Seances Acad Sci 248, 1721–1722.

    PubMed  CAS  Google Scholar 

  3. Niebuhr, E. (1978). The Cri du Chat syndrome: epidemiology, cytogenetics, and clinical features, Hum Genet 44, 227–275.

    Article  PubMed  CAS  Google Scholar 

  4. Albertson, D. G. (2003). Profiling breast cancer by array CGH, Breast Cancer Res Treat 78, 289–298.

    Article  PubMed  CAS  Google Scholar 

  5. Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., and Pinkel, D. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors, Science 258, 818–821.

    Article  PubMed  CAS  Google Scholar 

  6. Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Dohner, H., Cremer, T., and Lichter, P. (1997). Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances, Genes Chromosomes Cancer 20, 399–407.

    Article  PubMed  CAS  Google Scholar 

  7. Heselmeyer, K., Hellstrom, A. C., Blegen, H., Schrock, E., Silfversward, C., Shah, K., Auer, G., and Ried, T. (1998). Primary carcinoma of the fallopian tube: comparative genomic hybridization reveals high genetic instability and a specific, recurring pattern of chromosomal aberrations, Int J Gynecol Pathol 17, 245–254.

    Article  PubMed  CAS  Google Scholar 

  8. Pere, H., Tapper, J., Seppala, M., Knuutila, S., and Butzow, R. (1998). Genomic alterations in fallopian tube carcinoma: comparison to serous uterine and ovarian carcinomas reveals similarity suggesting likeness in molecular pathogenesis, Cancer Res 58, 4274–4276.

    PubMed  CAS  Google Scholar 

  9. Snijders, A. M., Nowee, M. E., Fridlyand, J., Piek, J. M., Dorsman, J. C., Jain, A. N., Pinkel, D., van Diest, P. J., Verheijen, R. H., and Albertson, D. G. (2003). Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in fallopian tube carcinoma, Oncogene 22, 4281–4286.

    Article  PubMed  CAS  Google Scholar 

  10. Nakao, K., Mehta, K. R., Fridlyand, J., Moore, D. H., Jain, A. N., Lafuente, A., Wiencke, J. W., Terdiman, J. P., and Waldman, F. M. (2004). High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization, Carcinogenesis 25, 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez, V., Chen, Y., Elkahloun, A., Dutra, A., Pak, E., and Chandrasekharappa, S. (2007). Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer, Genes Chromosomes Cancer 46, 694–707.

    Article  PubMed  CAS  Google Scholar 

  12. Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., Snijders, A., Albertson, D. G., Pinkel, D., Marra, M. A., Ling, V., MacAulay, C., and Lam, W. L. (2004). A tiling resolution DNA microarray with complete coverage of the human genome, Nat Genet 36, 299–303.

    Article  PubMed  CAS  Google Scholar 

  13. Selzer, R. R., Richmond, T. A., Pofahl, N. J., Green, R. D., Eis, P. S., Nair, P., Brothman, A. R., and Stallings, R. L. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH, Genes Chromosomes Cancer 44, 305–319.

    Article  PubMed  CAS  Google Scholar 

  14. Gresham, D., Ruderfer, D. M., Pratt, S. C., Schacherer, J., Dunham, M. J., Botstein, D., and Kruglyak, L. (2006). Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray, Science 311, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  15. Juneau, K., Palm, C., Miranda, M., and Davis, R. W. (2007). High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing, Proc Natl Acad Sci U S A 104, 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  16. Dunham, M. J., Badrane, H., Ferea, T., Adams, J., Brown, P. O., Rosenzweig, F., and Botstein, D. (2002). Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae, Proc Natl Acad Sci U S A 99, 16144–16149.

    Article  PubMed  CAS  Google Scholar 

  17. Green, B. M., Morreale, R. J., Ozaydin, B., Derisi, J. L., and Li, J. J. (2006). Genome-wide mapping of DNA synthesis in Saccharomyces cerevisiae reveals that mechanisms preventing reinitiation of DNA replication are not redundant, Mol Biol Cell 17, 2401–2414.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe, T., Murata, Y., Oka, S., and Iwahashi, H. (2004). A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes, Yeast 21, 351–365.

    Article  PubMed  CAS  Google Scholar 

  19. Shiu, S. H., and Borevitz, J. O. (2006). The next generation of microarray research: applications in evolutionary and ecological genomics, Heredity 100, 141–149.

    Article  PubMed  Google Scholar 

  20. Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events, Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  21. Weinert, T. A., and Hartwell, L. H. (1988). The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae, Science 241, 317–322.

    Article  PubMed  CAS  Google Scholar 

  22. Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr, A. M., and Elledge, S. J. (2001). Mrc1 transduces signals of DNA replication stress to activate Rad53, Nat Cell Biol 3, 958–965.

    Article  PubMed  CAS  Google Scholar 

  23. Sun, Z., Hsiao, J., Fay, D. S., and Stern, D. F. (1998). Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint, Science 281, 272–274.

    Article  PubMed  CAS  Google Scholar 

  24. Kolodner, R. D., Putnam, C. D., and Myung, K. (2002). Maintenance of genome stability in Saccharomyces cerevisiae, Science 297, 552–557.

    Article  PubMed  CAS  Google Scholar 

  25. Putnam, C. D., Pennaneach, V., and Kolodner, R. D. (2005). Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype, Mol Cell Biol 25, 7226–7238.

    Article  PubMed  CAS  Google Scholar 

  26. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C. J., Bofkin, L., Jones, T., Davis, R. W., and Steinmetz, L. M. (2006). A high-resolution map of transcription in the yeast genome, Proc Natl Acad Sci U S A 103, 5320–5325.

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning A Laboratory Manual, 2 edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  28. Myers, C. L., Dunham, M. J., Kung, S. Y., and Troyanskaya, O. G. (2004). Accurate detection of aneuploidies in array CGH and gene expression microarray data, Bioinformatics 20, 3533–3543.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Corey Nislow for experimental advice and generous use of his Affymetrix equipment; Maitreya Dunham for strains, experimental work and advice; William Lee for experimental advice; and Marinella Gebbia and Malene Urbanus for their technical assistance. Research in the Brown Lab is supported by the Canadian Cancer Society and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dion, B., Brown, G.W. (2009). Comparative Genome Hybridization on Tiling Microarrays to Detect Aneuploidies in Yeast. In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics