Skip to main content

Cartilage Tissue Engineering

Directed Differentiation of Embryonic Stem Cells in Three-Dimensional Hydrogel Culture

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 407))

Summary

The clinical goal of tissue engineering is to restore, repair, or replace damaged tissues in the body. Significant advances have been made in recent years using stem cells as a cell source for cartilage tissue engineering and reconstructive surgery applications. Embryonic stem cells have demonstrated the potential to self-renew and differentiate into a wide range of tissues including the chondrogenic lineage, depending on culture conditions. Three-dimensional scaffolds play an important role in tissue regeneration by providing attachment sites as well as bioactive signals for cells to grow and differentiate into specific lineages. The precise microenvironments required for optimal expansion or differentiation of stem cells are only beginning to emerge now, and the controlled differentiation of embryonic stem cells in tissue engineering remains a relatively unexplored field. Hydrogels are a class of polymer-based biomaterials that have been extensively utilized in tissue engineering as scaffolds. We have demonstrated that embryonic stem cells encapsulated within poly(ethylene glycol)-based (PEGDA) photopolymerizing hydrogels and cultured in an appropriate growth factor and medium conditions undergo chondrogenic differentiation with extracellular matrix deposition characteristic of neocartilage (Hwang et al., Stem Cells 24, 284–291). Another hydrogel that has been widely used for encapsulating chondrocytes in cartilage tissue engineering is alginate. This hydrogel also has potential for tissue engineering applications using stem cells. Here, we describe the three-dimensional culture of embryonic stem cell-derived embryoid bodies in hydrogels and their differentiation toward chondrogenic lineage in chemically defined chondrogenic medium in the presence of TGF-β1 (chondrogenic inducing conditions). We also discuss various tools and assays used for characterizing the tissue-engineered cartilage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Buckwalter, J. A., and Mankin, H. J. (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47: 487–504.

    CAS  PubMed  Google Scholar 

  2. Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., and Elisseeff, J. (2005) Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24: 284–291.

    Article  PubMed  Google Scholar 

  3. Kramer, J., Hegert, C., Guan, K., Wobus, A. M., Muller, P. K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92: 193–205.

    Article  CAS  PubMed  Google Scholar 

  4. Kramer, J., Hegert, C., and Rohwedel, J. (2003) In vitro differentiation of mouse ES cells: bone and cartilage. Methods Enzymol 365,251–268.

    Article  CAS  PubMed  Google Scholar 

  5. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells. 5: 149–155.

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama, N., Duryea, D., Manoukian, R., Chow, G., and Han, C. Y. (2003) Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci 116: 2015–2028.

    Article  CAS  PubMed  Google Scholar 

  7. Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q., and Zandstra, P. W. (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78, 442–453.

    Article  CAS  PubMed  Google Scholar 

  8. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001) Stem cells find their niche. Nature. 414, 98–104.

    Article  CAS  PubMed  Google Scholar 

  9. Streuli, C. (1999) Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11, 634–640.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, H., and Roy, K. (2005) Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng 11, 319–330.

    Article  CAS  PubMed  Google Scholar 

  11. Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M. (2001) Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712.

    Article  CAS  PubMed  Google Scholar 

  12. Schmeichel, K. L., and Bissell, M. J. (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116, 2377–2388.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, H. L., Chen, T. H., Low-Tone Ho, L., and Hung, S. C. (2005) Neocartilage from human mesenchymal stem cells in alginate: implied timing of transplantation. J Biomed Mater Res A 74, 439–446.

    PubMed  Google Scholar 

  14. Williams, C. G., Kim, T. K., Taboas, A., Malik, A., Manson, P., and Elisseeff, J. (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9, 679–688.

    Article  CAS  PubMed  Google Scholar 

  15. Bryant, S. J., Anseth, K. S., Lee, D. A., and Bader, D. L. (2004) Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res 22, 1143–1149.

    Google Scholar 

  16. Miot, S., Woodfield, T., Daniels, A. U., Suetterlin, R., Peterschmitt, I., Heberer, M., van Blitterswijk, C. A., Riesle, J., and Martin, I. (2005) Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials 26, 2479–2489.

    Article  CAS  PubMed  Google Scholar 

  17. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A., and Mooney, D. J. (2002) Engineering growing tissues. Proc Natl Acad Sci USA 99, 12025–12030.

    Article  CAS  PubMed  Google Scholar 

  18. Rowley, J. A., Madlambayan, G., and Mooney, D. J. (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, F., Williams, C. G., Wang, D. A., Lee, H., Manson, P. N., and Elisseeff, J. (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998.

    Article  CAS  PubMed  Google Scholar 

  20. Lum, L. Y., Cher, N. L., Williams, C. G., and Elisseeff, J. H. (2003) An extracellular matrix extract for tissue-engineered cartilage. IEEE Eng Med Biol Mag 22, 71–76.

    Article  PubMed  Google Scholar 

  21. Lutolf, M. P., and Hubbell, J. A. (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23, 47–55.

    Article  CAS  PubMed  Google Scholar 

  22. Philp, D., Chen, S. S., Fitzgerald, W., Orenstein, J., Margolis, L., and Kleinman, H. K. (2005) Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23: 288–296.

    Article  PubMed  Google Scholar 

  23. Farndale, R. W., Buttle, D. J., and Barrett, A. J. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883, 173–177.

    Google Scholar 

  24. Stegemann, H., and Stalder, K. (1967) Determination of hydroxyproline. Clin Chim Acta 18, 267–273.

    Article  CAS  PubMed  Google Scholar 

  25. Hermanson, G. (1996) Bioconjugate Techniques. San Diego, CA: Academy Press

    Google Scholar 

  26. Varghese, S., Lele, A. K., Srinivas, D., Sastry, M., and Mashelkar, R.A. (2001) Novel macroscopic self-organization in polymer gels. Adv Mater 13, 1544–1548.

    Article  CAS  Google Scholar 

  27. Elisseeff, J. H., Lee, A., Kleinman, H. K., and Yamada, Y. (2002) Biological response of chondrocytes to hydrogels. Ann N Y Acad Sci 961, 118–122.

    Article  CAS  PubMed  Google Scholar 

  28. Drury, J. L., and Mooney, D. J. (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351.

    Article  CAS  PubMed  Google Scholar 

  29. Balakrishnan, B., and Jayakrishnan, A. (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 3941–3951.

    Article  CAS  PubMed  Google Scholar 

  30. Bryant, S. J., Nuttelman, C. R., and Anseth, K. S. (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11, 439–457.

    Article  CAS  PubMed  Google Scholar 

  31. Williams, C. G., Malik, A. N., Kim, T. K., Manson, P. N., and Elisseeff, J. H. (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26, 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  32. Temenoff, J. S., Shin, H., Conway, D. E., Engel, P. S., and Mikos, A. G. (2003) In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 4: 1605–1613.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

Hwang, N.S., Varghese, S., Elisseeff, J. (2007). Cartilage Tissue Engineering. In: Vemuri, M.C. (eds) Stem Cell Assays. Methods in Molecular Biology™, vol 407. Humana Press. https://doi.org/10.1007/978-1-59745-536-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-536-7_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-744-0

  • Online ISBN: 978-1-59745-536-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics