Skip to main content

Estimation of Quantal Parameters With Multiple-Probability Fluctuation Analysis

  • Protocol
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 403))

Summary

The functional properties of central synapses are difficult to study because they can be modulated either presynaptically or postsynaptically, each connection has multiple contacts and release at each contact is stochastic. Moreover, studying central synapses with electrophysiology is complicated by the fact that synapses are often remote from the recording site and signals are often difficult to resolve above the noise. This together with the fact that central synapses often have few release sites and have nonuniform quantal parameters makes classical quantal analysis methods difficult to apply. Here, we discuss an alternative approach, multiple-probability fluctuation analysis (MPFA), which can be used to estimate nonuniform quantal parameters from fits of the relationship between the variance and mean amplitude of postsynaptic responses, recorded at different release probabilities. We illustrate the experimental protocols and the analysis procedure that should be followed to perform MPFA and interpret the estimated parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. del Castillo, J., and Katz, B. (1954) Quantal components of the end-plate potential. J. Physiol. 124, 560–573.

    CAS  PubMed  Google Scholar 

  2. Katz, B. (1969) The Release of Neural Transmitter Substances, Liverpool University Press, Liverpool, UK.

    Google Scholar 

  3. Vere-Jones, D. (1966) Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust. J. Stat. 8, 53–63.

    Article  Google Scholar 

  4. Walmsley, B. (1995) Interpretation of “quantal” peaks in distributions of evoked synaptic transmission at central synapses. Proc. R. Soc. Lond. B Biol. Sci. 261, 245–250.

    Google Scholar 

  5. Heinemann, S. H., and Conti, F. (1992) Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 207, 131–148.

    Article  CAS  PubMed  Google Scholar 

  6. Sigworth, F. J. (1980) The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. 307, 97–129.

    CAS  PubMed  Google Scholar 

  7. Reid, C. A., and Clements, J. D. (1999) Postsynaptic expression of long-term potentiation in the rat dentate gyrus demonstrated by variance-mean analysis. J. Physiol. 518, 121–130.

    Article  CAS  PubMed  Google Scholar 

  8. Silver, R. A., Momiyama, A., and Cull-Candy, S. G. (1998) Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J. Physiol. 510, 881–902.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer, A. C., Neher, E., and Schneggenburger, R. (2001) Estimation of quantal size and number of functional active zones at the calyx of held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900.

    CAS  PubMed  Google Scholar 

  10. Scheuss, V., and Neher, E. (2001) Estimating synaptic parameters from mean, variance, and covariance in trains of synaptic responses. Biophys. J. 81, 1970–1989.

    Article  CAS  PubMed  Google Scholar 

  11. Neher, E., and Sakaba, T. (2001) Estimating transmitter release rates from postsynaptic current fluctuations. J. Neurosci. 21, 9638–9654.

    CAS  PubMed  Google Scholar 

  12. Clements, J. D., and Silver, R. A. (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci. 23, 105–113.

    Article  CAS  PubMed  Google Scholar 

  13. Silver, R. A. (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J. Neurosci. Methods 130, 127–141.

    Article  PubMed  Google Scholar 

  14. Frerking, M., and Wilson, M. (1996) Effects of variance in mini amplitude on stimulus-evoked release: a comparison of two models. Biophys. J. 70, 2078–2091.

    Article  CAS  PubMed  Google Scholar 

  15. Walmsley, B., Edwards, F. R., and Tracey, D. J. (1988) Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. J. Neurophysiol. 60, 889–908.

    CAS  PubMed  Google Scholar 

  16. Murthy, V. N., Sejnowski, T. J., and Stevens, C. F. (1997) Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612.

    Article  CAS  PubMed  Google Scholar 

  17. Saviane, C., and Silver, R. A. (2006) Errors in the estimation of the variance: implications for multiple-probability fluctuation analysis. J. Neurosci. Methods 153, 250–260.

    Article  PubMed  Google Scholar 

  18. Sargent, P. B., Saviane, C., Nielsen, T. A., DiGregorio, D. A., and Silver, R. A. (2005) Rapid vesicular release, quantal variability and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J. Neurosci. 25, 8173–8187.

    Article  CAS  PubMed  Google Scholar 

  19. Saviane, C., and Silver, R. A. (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987.

    Article  CAS  PubMed  Google Scholar 

  20. Wadiche, J. I., and Jahr, C. E. (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32, 301–313.

    Article  CAS  PubMed  Google Scholar 

  21. Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A., and Svoboda, K. (2002) Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664.

    CAS  PubMed  Google Scholar 

  22. Christie, J. M., and Jahr, C. E. (2006) Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J. Neurosci. 26, 210–216.

    Article  CAS  PubMed  Google Scholar 

  23. Harrison, J., and Jahr, C. E. (2003) Receptor occupancy limits synaptic depression at climbing fiber synapses. J. Neurosci. 23, 377–383.

    CAS  PubMed  Google Scholar 

  24. Silver, R. A., Lubke, J., Sakmann, B., and Feldmeyer, D. (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984.

    Article  CAS  PubMed  Google Scholar 

  25. Silver, R. A., Cull-Candy, S. G., and Takahashi, T. (1996) Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. 494, 231–250.

    CAS  PubMed  Google Scholar 

  26. DiGregorio, D. A., Nusser, Z., and Silver, R. A. (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533.

    Article  CAS  PubMed  Google Scholar 

  27. Foster, K. A., and Regehr, W. G. (2004) Variance-mean analysis in the presence of a rapid antagonist indicates vesicle depletion underlies depression at the climbing fiber synapse. Neuron 43, 119–131.

    Article  CAS  PubMed  Google Scholar 

  28. Clements, J. (2003) Variance-mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation. J. Neurosci. Methods 130, 115–125.

    Article  PubMed  Google Scholar 

  29. Feldmeyer, D., Lubke, J., Silver, R. A., and Sakmann, B. (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822.

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen, T. A., DiGregorio, D. A., and Silver, R. A. (2004) Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42, 757–771.

    Article  CAS  PubMed  Google Scholar 

  31. Bekkers, J. M., and Stevens, C. F. (1996) Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. J. Neurophysiol. 75, 1250–1255.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by The Wellcome Trust, the MRC, and the EC. RAS is in receipt of a Wellcome Trust Senior Fellowship.

Authors

Editor information

Peter Molnar James J. Hickman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Saviane, C., Silver, R.A. (2007). Estimation of Quantal Parameters With Multiple-Probability Fluctuation Analysis. In: Molnar, P., Hickman, J.J. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology™, vol 403. Humana Press. https://doi.org/10.1007/978-1-59745-529-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-529-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-698-6

  • Online ISBN: 978-1-59745-529-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics