Skip to main content

Methods for Analysis of Crossover Interference in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 557))

Abstract

Interest in crossover interference in yeast has been spurred by the discovery and characterization of mutants that alter it as well as by the development and testing of models to explain it. This chapter describes methods for detecting and for measuring interference, with emphasis on those that exploit the ability to examine all four products of individual acts of meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lhuissier, F. G. P., Offenberg, H. H., Wittich, P. E., Vischer, N. O. E. and Heyting, C. (2007) The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. The Plant Cell 19, 862–876.

    Article  PubMed  CAS  Google Scholar 

  2. Fung, J. C., Rockmill, B., Odell, M. and Roeder, G. S. (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802.

    Article  PubMed  CAS  Google Scholar 

  3. Sturtevant, A. H. (1915) The behavior of the chromosomes, as studied through linkage. Zeit. f. ind. Abst. u. Vereb. 13, 234–287.

    Article  Google Scholar 

  4. Muller, H. J. (1916) The mechanism of crossing over. Am. Nat. 50, 194–221 and ff.

    Google Scholar 

  5. Papazian, H. P. (1952) The analysis of tetrad data. Genetics 37, 175–188.

    PubMed  CAS  Google Scholar 

  6. Haldane, J. B. S. (1919) The combination of linkage values and the calculation of distances between loci of linked factors. J. Genet. 8, 299–309.

    Article  Google Scholar 

  7. Foss, E., Lande, R., Stahl, F. W. and Steinberg, C. M. (1993) Chiasma interference as a function of genetic distance. Genetics 133, 681–691. Corigendum: Genetics 134, 997.

    PubMed  CAS  Google Scholar 

  8. Bailey, N. T. J. (1961) Introduction to the Mathematical Theory of Genetic Linkage, Oxford University Press, London

    Google Scholar 

  9. Zhao, H., McPeek, M. S. and Speed, T. P. (1995a) Statistical analysis of chromatid interference. Genetics 139, 1057–1065.

    PubMed  CAS  Google Scholar 

  10. Perkins, D. D. (1949) Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34, 607–626.

    Google Scholar 

  11. Malkova, A., Swanson, J., German, M., McCusker, J. H., Housworth, E. A., Stahl, F. W. and Haber, J. E. (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168, 49–63.

    Article  PubMed  CAS  Google Scholar 

  12. McPeek, M. S. and Speed, T. P. (1995) Modeling interference in genetic recombination. Genetics 139, 1031–1044.

    PubMed  CAS  Google Scholar 

  13. Zhao, H., Speed, T. P. and McPeek, M. S. (1995b) Statistical analysis of crossover interference using the Chi-Square model. Genetics 139, 1045–1056.

    PubMed  CAS  Google Scholar 

  14. Broman, K. W. and Weber, J. L. (2001) Characterization of human crossover interference. Am. J. Hum. Genet. 66, 1911–1926.

    Article  Google Scholar 

  15. Kleckner, N., Zickler, D., Jones, G. H., Dekker, J., Padmore, R., Henle, J. and Hutchinson, J. (2004) A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. USA 101, 12592–12597.

    Article  PubMed  CAS  Google Scholar 

  16. Hilliker, A. J. and Chovnick, A. (1981) Further observations on intragenic recombination in Drosophila melanogaster. Genet. Res. 38, 281–296.

    Google Scholar 

  17. Hilliker, A. J., Clark, S. H. and Chovnick, A. (1991) The effect of DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics 129, 779–781.

    Google Scholar 

  18. Fisher, R. A. (1951) A combinatorial formulation of multiple linkage tests. Nature. 167, 520.

    Article  PubMed  CAS  Google Scholar 

  19. Owen, A. R. G. (1949) The theory of genetical recombination. I. Long chromosome arms. Proc. Roy. Soc. B. 136, 67–94.

    Article  CAS  Google Scholar 

  20. Payne, L. C. (1956) The theoryof genetical recombination: a general formulation for a certain class of intercept length distributions appropriate to the discussion of multiple linkage. Proc. Roy. Soc. B. 144, 528–544.

    Article  Google Scholar 

  21. Cobbs, G. (1978) Renewal process approach to the theory of genetic linkage: case of no chromatid interference. Genetics 89, 563–581.

    PubMed  CAS  Google Scholar 

  22. Stamm, P. (1979) Interference in genetic crossing over and chromosome mapping. Genetics 92, 573–594.

    Google Scholar 

  23. Mather, K. (1935) Reductional and equational separation of the chromosomes in bivalents and multivalents. J. Genet. 30, 53–78.

    Article  Google Scholar 

  24. Housworth, E. A. and Stahl, F. W. (2003) Crossover interference in humans. Am. J. Hum. Genet. 73, 188–197.

    Article  PubMed  CAS  Google Scholar 

  25. Lam, S. Y., Horn, S. R., Radford, S. J., Housworth, E. A., Stahl, F. W. and Copenhaver, G. P. (2005) Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis. Genetics 170, 807–812.

    Article  PubMed  CAS  Google Scholar 

  26. Getz, T. J., Banse, S. A., Young, L. S., Banse, A. V., Swanson, J, Wang, G. M., Browne, B. L., Foss, H. M. and Stahl, F. W. (2007) Differential mismatch repair of heteroduplexes distinguishes interfering from “non”-interfering crossing over in Saccharomyces cerevisiae. Genetics 178, 1251–1269.

    Google Scholar 

  27. Stahl, F. W. (2008) On the “NPD ratio” as a test for crossover interference. Genetics 179, 701–704.

    Article  PubMed  Google Scholar 

  28. Copenhaver, G. P., Housworth, E. A. and Stahl, F. W. (2002) Crossover interference in Arabidopsis. Genetics 160, 1631–1639.

    PubMed  CAS  Google Scholar 

  29. Stahl, F. W. and Lande, R. (1995) Estimating interference and linkage map distance from two-factor tetrad data. Genetics 139, 1449–1454.

    PubMed  CAS  Google Scholar 

  30. Börner, G. V., Kleckner, N. and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

    Article  PubMed  Google Scholar 

  31. Zalevsky, J., MacQueen, A. J., Duffy, J. B., Kemphues, K. J. and Villeneuve, A. M. (1999) Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics 153, 1271–1283.

    PubMed  CAS  Google Scholar 

  32. Sturtevant, A. H. (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14, 43–59.

    Article  Google Scholar 

  33. Strickland, W. N. (1958) An analysis of interference in Aspergillus nidulans. Proc. Roy. Soc. Lond. B. 149, 82–101.

    Google Scholar 

  34. Shinohara, M., Sakai, K., Shinohara, A. and Bishop, D. K. (2003) Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

F.W.S. thanks John P. Nolan for drawing his attention to the view that the distribution of intercrossover distances in the Counting Model is aptly referred to as an Erlang distribution. Tom Petes notified us that the Web site “Stahl Lab Online Tools” mindlessly calculated fN exp values for fT obs > 2/3. It no longer does. Jette Foss provided invaluable editing of the manuscript. The Genetics Community is grateful to Richard Lowry, author of the continually improving, user-friendly web site VassarStats. Dan Graham kindly updated Stahl Lab Online Tools to reflect things we learned during the preparation of this Chapter; in doing so he caught some mistakes in our manuscript. The contribution by E.A.H. was supported by an NSF grant (DMS-0306243) to Indiana University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stahl, F.W., Housworth, E.A. (2009). Methods for Analysis of Crossover Interference in Saccharomyces cerevisiae . In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 557. Humana Press. https://doi.org/10.1007/978-1-59745-527-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-527-5_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-66-4

  • Online ISBN: 978-1-59745-527-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics