Skip to main content
Book cover

Meiosis pp 209–234Cite as

Stabilization and Electrophoretic Analysis of Meiotic Recombination Intermediates in Saccharomyces cerevisiae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 557))

Abstract

Joint Molecule (JM) recombination intermediates result from DNA strand-exchange between homologous chromosomes. Physical monitoring of JM formation in budding yeast has provided a wealth of information about the timing and mechanism of meiotic recombination. These assays are especially informative when applied to the analysis of mutants for which genetic analysis of recombination is impossible, i.e. mutants that die during meiosis. This chapter describes three distinct methods to stabilize JMs against thermally driven dissolution as well as electrophoretic approaches to resolve and detect JMs at two well-characterized recombination hotspots.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hunter, N. (2006) Meiotic recombination, in Molecular Genetics of Recombination (Aguilera, A., and Rothstein, R., eds.), Springer-Verlag, Heidelberg, pp. 381–442.

    Google Scholar 

  2. Bishop, D. K. and Zickler, D. (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.

    Article  PubMed  CAS  Google Scholar 

  3. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand-break repair model for recombination. Cell 33, 25–35.

    Article  PubMed  CAS  Google Scholar 

  4. Schwacha, A. and Kleckner, N. (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791.

    Article  PubMed  CAS  Google Scholar 

  5. Allers, T. and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.

    Article  PubMed  CAS  Google Scholar 

  6. Börner, G. V., Kleckner, N., and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

    Article  PubMed  Google Scholar 

  7. Hunter, N. and Kleckner, N. (2001) The single-end invasion. An asymmetric intermediate at the double- strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.

    Article  PubMed  CAS  Google Scholar 

  8. Panyutin, I. G. and Hsieh, P. (1994) The kinetics of spontaneous DNA branch migration. Proc. Natl. Acad. Sci. U.S.A. 91, 2021–2025.

    Article  PubMed  CAS  Google Scholar 

  9. Bell, L. R. and Byers, B. (1983) Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb. Symp. Quant. Biol. 47, 829–840.

    Article  PubMed  Google Scholar 

  10. Schwacha, A. and Kleckner, N. (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63.

    Article  PubMed  CAS  Google Scholar 

  11. Duckett, D. R., Murchie, A. I., and Lilley, D. M. (1990) The role of metal ions in the conformation of the four-way DNA junction. EMBO J. 9, 583–590.

    PubMed  CAS  Google Scholar 

  12. Allers, T. and Lichten, M. (2000) A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Res. 28, e6.

    Article  PubMed  CAS  Google Scholar 

  13. Collins, I. and Newlon, C. S. (1994) Meiosis-specific formation of joint DNA-molecules containing sequences from homologous chromosomes. Cell 76, 65–75.

    Article  PubMed  CAS  Google Scholar 

  14. Bell, L. and Byers, B. (1983) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal. Biochem. 130, 527–535.

    Article  PubMed  CAS  Google Scholar 

  15. Bell, L. and Byers, B. (1979) Occurrence of crossed strand-exchange forms in yeast DNA during meiosis. Proc. Natl. Acad. Sci. U.S.A. 76, 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  16. Schwacha, A. and Kleckner, N. (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135.

    Article  PubMed  CAS  Google Scholar 

  17. Jessop, L., Allers, T., and Lichten, M. (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169, 1353–67.

    Article  PubMed  CAS  Google Scholar 

  18. Oh, S. D., Lao, J. P., Hwang, P. Y., Taylor, A. F., Smith, G. R., and Hunter, N. (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272.

    Article  PubMed  CAS  Google Scholar 

  19. Allers, T. and Lichten, M. (2001) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell 8, 225–231.

    Article  PubMed  CAS  Google Scholar 

  20. Holm, C., Meeks-Wagner, D. W., Fangman, W. L., and Botstein, D. (1986) A rapid, efficient method for isolating DNA from yeast. Gene 42, 169–173.

    Article  PubMed  CAS  Google Scholar 

  21. Lao, J. P., Oh, S. D., Shinohara, M., Shinohara, A., and Hunter, N. (2008) Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol. Cell 29, 517–524.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Hunter lab is supported by NIH NIGMS grant GM074223; work in the Lichten lab is supported by the Intramural Research Program of the National Cancer Institute. The Hunter lab protocols are modified from protocols developed by Tony Schwacha and Nancy Kleckner (4, 10).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oh, S.D., Jessop, L., Lao, J.P., Allers, T., Lichten, M., Hunter, N. (2009). Stabilization and Electrophoretic Analysis of Meiotic Recombination Intermediates in Saccharomyces cerevisiae . In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 557. Humana Press. https://doi.org/10.1007/978-1-59745-527-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-527-5_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-66-4

  • Online ISBN: 978-1-59745-527-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics