Advertisement

Identification of Mutations in the Kir6.2 Subunit of the KATP Channel

  • Sarah E. Flanagan
  • Sian Ellard
Part of the Methods in Molecular Biology book series (MIMB, volume 491)

Summary

The beta-cell ATP-sensitive potassium channel is a key component of stimulus —secretion coupling in the pancreatic beta-cell. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1. Loss of function mutations in the KCNJ11 and ABCC8 genes that encode for Kir6.2 and SUR1 can cause over-secretion of insulin and result in hyperinsulinism of infancy, while gain of function mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes.

Genetic testing is important for patients with hyperinsulinism or neonatal diabetes, as identification of a KATP channel mutation confirms a diagnosis of their disorder. This genetic information may direct the clinical management; for example, patients with neonatal diabetes may transfer from insulin to sulfonylu-reas with an improvement in glycaemic control. The genetic diagnosis can also help to predict the likely course of the disease and may allow accurate counselling in terms of recurrence risk for these families.

This chapter focuses on the methodology used for the analysis of the KCNJ11 gene by direct sequencing. The same principles can be employed for ABCC8 analysis although the polymerase chain reaction (PCR) primers will differ. Details on DNA extraction from peripheral blood leukocytes, amplification of the KCNJ11 gene by the PCR, sequencing, and mutation detection are provided.

Key words

DNA extraction Polymerase chain reaction Sequencing KCNJ11 Neonatal diabetes Hyperinsulinism 

References

  1. 1.
    Thomas PM, Yuyang Y, and Lightner E (1996) Mutation of the pancreatic islet inward rectifier, Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5:1809 –1812.CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas PM, Cote GJ, Wohilk N, Haddad B, Mathew PM, Rabel W, Aquilar-Bryan L, Gagel RF, and Byran J (1995) Mutations in the sulphonylurea receptor and familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426–429.CrossRefPubMedGoogle Scholar
  3. 3.
    Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, and Ellard S (2006) A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 15:1793 –1800.CrossRefPubMedGoogle Scholar
  4. 4.
    Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, and Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838 –1849.CrossRefPubMedGoogle Scholar
  5. 5.
    Nestorowicz A, Inagaki N, Gonoi T, Schoor KP, Wilson BA, Glaser B, Landau H, Stanley CA, Thornton PS, Seino S, and Permutt MA (1997) A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2 is associated with familial hyperinsulinism. Diabetes 46:1743 –1748.CrossRefPubMedGoogle Scholar
  6. 6.
    Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047 –2058.CrossRefPubMedGoogle Scholar
  7. 7.
    Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, Rahier J, Vauhkonen I, Kere J, Laakso M, Ashcroft F, and Otonkoski T (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106:897 –906.CrossRefPubMedGoogle Scholar
  8. 8.
    Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, and Froguel P (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456 –466.CrossRefPubMedGoogle Scholar
  9. 9.
    Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A, Edghill EL, Mackay DJ, Proks P, Shimomura K, Haberland H, Carson DJ, Shield JP, Hattersley AT, and Ashcroft FM (2007) Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 81:375 –382.CrossRefPubMedGoogle Scholar
  10. 10.
    Massa O, Iafusco D, D'Amato E, Gloyn AL, Hattersley AT, Pasquino B, Tonini G, Dammacco F, Zanette G, Meschi F, Porzio O, Bottazzo G, Crino A, Lorini R, Cerutti F, Vanelli M, and Barbetti F (2005) KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum Mutat 25:22 –27.CrossRefPubMedGoogle Scholar
  11. 11.
    Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre H, Abuelo D, Phornphutkul C, Molnes J, Bell GI, Gloyn AL, Hattersley AT, Molven A, Sovik O, and Njolstad PR (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713 –2718.CrossRefPubMedGoogle Scholar
  12. 12.
    Vaxillaire M, Populaire C, Busiah K, Cave H, Gloyn AL, Hattersley AT, Czernichow P, Froguel P, and Polak M (2004) Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719 –2722.CrossRefPubMedGoogle Scholar
  13. 13.
    Flanagan SE, Edghill EL, Gloyn AL, Ellard S, and Hattersley AT (2006) Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia 49:1190 –1197.CrossRefPubMedGoogle Scholar
  14. 14.
    Zung A, Glaser B, Nimri R, and Zadik Z (2004) Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J Clin Endocrinol Metab 89:5504 –5507.CrossRefPubMedGoogle Scholar
  15. 15.
    Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Sovik O, Polak M, and Hattersley AT (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467 –477.CrossRefPubMedGoogle Scholar
  16. 16.
    Codner E, Flanagan SE, Ugarte F, Garcia H, Vidal T, Ellard S, and Hattersley AT (2007) Sulfonylurea treatment in young children with neonatal diabetes: dealing with hyperglycaemia, hypoglycaemia and sickdays. Diabetes Care 30:e28 –e29.CrossRefPubMedGoogle Scholar
  17. 17.
    Gloyn AL, Cummings EA, Edghill EL, Harries LW, Scott R, Costa T, Temple IK, Hattersley AT, and Ellard S (2004) Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the betacell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 89:3932 –3935.CrossRefPubMedGoogle Scholar
  18. 18.
    Edghill EL, Gloyn AL, Goriely A, Harries LW, Flanagan SE, Rankin J, Hattersley AT, and Ellard S (2007) Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J Clin Endocrinol Metab 92:1773 –1777.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2008, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sarah E. Flanagan
    • 1
  • Sian Ellard
    • 1
  1. 1.Institute of Biomedical and Clinical SciencePeninsula Medical SchoolExeterUK

Personalised recommendations