Skip to main content

Rule-Based Modeling of Biochemical Systems with BioNetGen

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 500))

Summary

Rule-based modeling involves the representation of molecules as structured objects and molecular interactions as rules for transforming the attributes of these objects. The approach is notable in that it allows one to systematically incorporate site-specific details about protein—protein interactions into a model for the dynamics of a signal-transduction system, but the method has other applications as well, such as following the fates of individual carbon atoms in metabolic reactions. The consequences of protein—protein interactions are difficult to specify and track with a conventional modeling approach because of the large number of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling that should enable the construction and analyses of comprehensive models for signal transduction pathways and similarly large-scale models for other biochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291.

    Article  PubMed  CAS  Google Scholar 

  2. Kholodenko, B. N. (2006) Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176.

    Article  PubMed  CAS  Google Scholar 

  3. Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., and Sorger, P. K. (2006) Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  4. Dueber, J. E., Yeh, B. J., Bhattacharyya, R. P., and Lim, W. A. (2004) Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr. Opin. Struct. Biol. 14, 690–699.

    Article  PubMed  CAS  Google Scholar 

  5. Pawson, T. and Linding, R. (2005) Synthetic modular systems — Reverse engineering of signal transduction. FEBS Lett. 579, 1808–1814.

    Article  PubMed  CAS  Google Scholar 

  6. Bashor, C. J., Helman, N. C., Yan, S., and Lim, W. A. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  7. Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S., and Goldstein, B. (2003) The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794.

    Article  PubMed  CAS  Google Scholar 

  8. Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G., Hucka, M., and Fontana, W. (2006) Rules for modeling signal-transduction systems. Sci. STKE 2006, re6.

    Google Scholar 

  9. Gomperts, B. D., Kramer, I. M., and Tatham, P. E. R. (2003) Signal Transduction. Elsevier Academic Press, San Diego, CA.

    Google Scholar 

  10. Hunter, T. (2000) Signaling: 2000 and beyond. Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  11. Cambier, J. C. (1995) Antigen and Fc receptor signaling: The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155, 3281–3285.

    PubMed  CAS  Google Scholar 

  12. Pawson, T. and Nash, P. (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452.

    Article  PubMed  CAS  Google Scholar 

  13. Pawson, T. (2004) Specificity in signal transduction: From phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203.

    Article  PubMed  CAS  Google Scholar 

  14. Seet, B. T., Dikic, I., Zhou, M. M., and Pawson, T. (2006) Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483.

    Article  PubMed  CAS  Google Scholar 

  15. Mathivanan, S., Periaswamy, B., Gandhi, T. K. B., Kandasamy, K., Suresh, S., Mohmood, R., Ramachandra, Y. L., and Pandey, A. (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7, S19.

    Article  PubMed  Google Scholar 

  16. Mathivanan, S., Ahmed, M., Ahn, N. G., Alexandre, H., Amanchy, R., Andrews, P. C., Bader, J. S., Balgley, B. M., Bantscheff, M., Bennett, K. L., et al. (2008) Human Proteinpedia enables sharing of human protein data. Nat. Biotechnol. 26, 164–167.

    Article  PubMed  CAS  Google Scholar 

  17. Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262.

    Article  PubMed  CAS  Google Scholar 

  18. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648.

    Article  PubMed  CAS  Google Scholar 

  19. Kholodenko, B. N., Demin, O. V., Moehren, G., and Hoek, J. B. (1999) Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181.

    Article  PubMed  CAS  Google Scholar 

  20. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D., and Muller, G. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375.

    Article  PubMed  Google Scholar 

  21. Morton-Firth, C. J. and Bray, D. (1998) Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128.

    Article  PubMed  CAS  Google Scholar 

  22. Endy, D. and Brent, R. (2001) Modelling cellular behaviour. Nature 409, 391–395.

    Article  PubMed  CAS  Google Scholar 

  23. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P. J., Ward, C. W., and Burgess, A. W. (2003) Epidermal growth factor receptor: Mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53.

    Article  PubMed  CAS  Google Scholar 

  24. Danos, V. and Laneve, C. (2004) Formal molecular biology. Theor. Comput. Sci. 325, 69–110.

    Article  Google Scholar 

  25. Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. (2005) Graphical rule-based representation of signal-transduction networks, in SAC '05: Proc. ACM Symp. Appl. Computing, ACM, New York, NY, pp. 133–140.

    Google Scholar 

  26. Blinov, M. L., Yang, J., Faeder, J. R., and Hlavacek, W. S. (2006) Graph theory for rule-based modeling of biochemical networks. Lect. Notes Comput. Sci. 4230, 89–106.

    Article  Google Scholar 

  27. Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. (2007) Rule-based modelling of cellular signalling. Lect. Notes Comput. Sci. 4703, 17–41.

    Article  Google Scholar 

  28. Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek, W. S. (2005) Rule-based modeling of biochemical networks. Complexity 10, 22–41.

    Article  Google Scholar 

  29. Lok, L. and Brent, R. (2005) Automatic generation of cellular networks with Moleculizer 1.0. Nat. Biotechnol. 23, 131–36.

    Article  PubMed  CAS  Google Scholar 

  30. Danos, V., Feret, J., Fontana, W., and Krivine, J. (2007) Scalable simulation of cellular signalling networks. Lect. Notes Comput. Sci. 4807, 139–157.

    Article  Google Scholar 

  31. Yang, J., Monine, M. I., Faeder, J. R., and Hlavacek, W. S. (2007) Kinetic Monte Carlo method for rule-based modeling of biochemical networks. arXiv:0712.3773.

    Google Scholar 

  32. Goldstein, B., Faeder, J. R., Hlavacek, W. S., Blinov, M. L., Redondo, A., and Wofsy, C. (2002) Modeling the early signaling events mediated by FceRI. Mol. Immunol. 38, 1213–1219.

    Article  PubMed  CAS  Google Scholar 

  33. Faeder, J. R., Hlavacek, W. S., Reischl, I., Blinov, M. L., Metzger, H., Redondo, A., Wofsy, C., and Goldstein, B. (2003) Investigation of early events in FceRI-mediated signaling using a detailed mathematical model. J. Immunol. 170, 3769–3781.

    PubMed  CAS  Google Scholar 

  34. Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek, W. S. (2005) Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst. Biol. 2, 5–15.

    Article  CAS  Google Scholar 

  35. Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2006) A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151.

    Article  PubMed  CAS  Google Scholar 

  36. Barua, D., Faeder, J. R., and Haugh, J. M. (2007) Structure-based kinetic models of modular signaling protein function: focus on Shp2. Biophys. J. 92, 2290–2300.

    Article  PubMed  CAS  Google Scholar 

  37. Barua, D., Faeder, J. R., and Haugh, J. M. (2008) Computational models of tandem Src homology 2 domain interactions and application to phosphoinositide 3-kinase. J. Biol. Chem. 283, 7338–7345.

    Article  PubMed  CAS  Google Scholar 

  38. Mu, F. P., Williams, R. F., Unkefer, C. J., Unkefer, P. J., Faeder, J. R., and Hlavacek, W. S. (2007) Carbon-fate maps for metabolic reactions. Bioinformatics 23, 3193–3199.

    Article  PubMed  CAS  Google Scholar 

  39. Rubenstein, R., Gray, P. C., Cleland, T. J., Piltch, M. S., Hlavacek, W. S., Roberts, R. M., Ambrosiano, J., and Kim, J. I. (2007) Dynamics of the nucleated polymerization model of prion replication. Biophys. Chem. 125, 360–367.

    Article  PubMed  CAS  Google Scholar 

  40. Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434.

    Article  CAS  Google Scholar 

  41. Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  CAS  Google Scholar 

  42. Gillespie, D. T. (2007) Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55.

    Article  PubMed  CAS  Google Scholar 

  43. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., et al. (2003) The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531.

    Article  PubMed  CAS  Google Scholar 

  44. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006) COPASI--a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen, S. D., and Hindmarsh, A. C. (1996) CVODE, A Stiff/Nonstiff ODE Solver in C. Comp. Phys. 10, 138–143.

    Google Scholar 

  46. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S. (2005) SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–96.

    Article  Google Scholar 

  47. Berg, J. M., Tymoczko, J. L., and Stryer, L. (2006) Biochemistry. W. H. Freeman, New York.

    Google Scholar 

  48. Gross, J. L., and Yellen, J. (eds.) (2003) Handbook of Graph Theory.CRC Press, Boca Raton, FL.

    Google Scholar 

  49. McKay, B. D. (1981) Practical graph isomorphism. Congressus Numerantium 30, 45–87.

    Google Scholar 

  50. Ullmann, J. R. (1976) An algorithm for subgraph isomorphism. J. ACM 23, 31–42.

    Article  Google Scholar 

  51. Lemons, N. and Hlavacek, W. S. private communication.

    Google Scholar 

  52. Borisov, N. M., Markevich, N. I., Hoek, J. B., and Kholodenko, B. N. (2005) Signaling through receptors and scaffolds: Independent interactions reduce combinatorial complexity. Biophys. J. 89, 951–966.

    Article  PubMed  CAS  Google Scholar 

  53. Borisov, N. M., Markevich, N. I., Hoek, J. B., and Kholodenko, B. N. (2006) Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains. BioSystems 83, 152–166.

    Article  PubMed  CAS  Google Scholar 

  54. Borisov, N. M., Chistopolsky, A. S., Kholodenko, B. N., and Faeder, J. R. (2008) Domain-oriented reduction of rule-based network models IET Syst. Biol. 2, 342–351.

    Article  PubMed  CAS  Google Scholar 

  55. Lauffenburger, D. A. and Linderman, J. J. (1993) Receptors: Models for Binding, Trafficking, and Signalling. Oxford, New York, NY.

    Google Scholar 

  56. Posner, R. G., Wofsy, C., and Goldstein, B. (1995) The kinetics of bivalent ligand-bivalent receptor aggregation: Ring formation and the breakdown of the equivalent site approximation. Math. Biosci. 126, 171–190.

    Article  PubMed  CAS  Google Scholar 

  57. Pollard, T. D. and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465.

    Article  PubMed  CAS  Google Scholar 

  58. Koschorreck, M., Conzelmann, H., Ebert, S., Ederer, M., and Gilles, E. D. (2007) Reduced modeling of signal transduction — A modular approach. BMC Bioinformatics 8, 336.

    Article  PubMed  Google Scholar 

  59. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., and Tymchyshyn, O. (2007) Probabilistic model checking of complex biological pathways. Lect. Notes Comput. Sci. 4210, 32–47.

    Article  Google Scholar 

Download references

Acknowledgments

Work on BioNetGen has been supported by NIH grants GM035556, RR18754, and GM76570 and DOE contract DE-AC52-06NA25396. J.R.F. also acknowledges support from the Department of Computational Biology at the University of Pittsburgh School of Medicine. Integration of BioNetGen into the Virtual Cell was supported by U54 RR022232 NIH-Roadmap grant for Technology Centers for Networks and Pathways. Special thanks to Byron Goldstein for the initial impetus that led to the development of BioNetGen and for his active and ongoing support. We thank the many people who have contributed to the development of BioNetGen and BioNetGen-compatible tools, including Jordan Atlas, Nikolay Borisov, Alexander Chistopolsky, Joshua Colvin, Thierry Emonet, Sarah Faeder, Leigh Fanning, Matthew Fricke, Bin Hu, Jeremy Kozdon, Mikhail Kravchenko, Nathan Lemons, Michael Monine, Fangping Mu, Ambarish Nag, Richard Posner, Amitabh Trehan, Robert Seletsky, Michael Sneddon, and Jin Yang. We also thank Gary An, Dipak Barua, Marc Birtwistle, James Cavenaugh, Ed Clarke, Vincent Danos, Jerome Feret, Andrew Finney, Walter Fontana, Leonard Harris, Jason Haugh, Michael Hucka, Sumit Jha, Jean Krivine, Chris Langmead, Paul Loriaux, Boris Kholodenko, Michael Saelim, Ed Stites, Ty Thomson, and Aileen Vandenberg for their helpful discussions and input. People contributing to the integration of BioNetGen with the Virtual Cell include James Schaff, Ion Moraru, Anuradha Lakshminarayana, Fei Gao, and Leslie Loew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Faeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Faeder, J.R., Blinov, M.L., Hlavacek, W.S. (2009). Rule-Based Modeling of Biochemical Systems with BioNetGen. In: Maly, I. (eds) Systems Biology. Methods in Molecular Biology, vol 500. Humana Press. https://doi.org/10.1007/978-1-59745-525-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-525-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-64-0

  • Online ISBN: 978-1-59745-525-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics