Skip to main content

Dynamic Knowledge Representation Using Agent-Based Modeling: Ontology Instantiation and Verification of Conceptual Models

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 500))

Summary

The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to “know what they know.” Despite increasing emphasis on “data-driven” research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often “break” conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, G. (2008) Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5, 11.

    Article  Google Scholar 

  2. An, G. (2004) In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit. Care Med. 32, 2050–2060.

    Article  Google Scholar 

  3. An, G. (2006) Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J. Crit. Care 21, 105–110; discussion 110–111.

    Article  Google Scholar 

  4. Zhang, L., Athale, C. A., and Deisboeck, T. S. (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene–protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244, 96–107.

    Article  Google Scholar 

  5. Bonabeau, E. (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 99 Suppl 3, 7280–7287.

    Article  Google Scholar 

  6. Bankes, S. C. (2002) Agent-based modeling: a revolution? Proc. Natl. Acad. Sci. USA 99 Suppl 3, 7199–7200.

    Article  Google Scholar 

  7. An, G. (2001) Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials. Shock 16, 266–273.

    Article  Google Scholar 

  8. Thorne, B. C., Bailey, A. M., and Peirce, S. M. (2007) Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8, 245–257.

    Article  Google Scholar 

  9. Mansury, Y., Diggory, M., and Deisboeck, T. S. (2006) Evolutionary game theory in an agent-based brain tumor model: exploring the ‘genotype–phenotype’ link. J. Theor. Biol. 238, 146–156.

    Article  Google Scholar 

  10. Bailey, A. M., Thorne, B. C., and Peirce, S. M. (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35, 916–936.

    Article  Google Scholar 

  11. Tang, J., Ley, K. F., and Hunt, C. A. (2007) Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC Syst. Biol. 1, 14.

    Article  Google Scholar 

  12. Walker, D. C., Hill, G., Wood, S. M., Smallwood, R. H., and Southgate, J. (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans. Nanobiosci. 3, 153–163.

    Article  Google Scholar 

  13. Pogson, M., Smallwood, R., Qwarnstrom, E., and Holcombe, M. (2006) Formal agent-based modelling of intracellular chemical interactions. Biosystems 85, 37–45.

    Article  Google Scholar 

  14. Broderick, G., Ru'aini, M., Chan, E., and Ellison, M. J. (2005) A life-like virtual cell membrane using discrete automata. In Silico Biol. 5, 163–178.

    Google Scholar 

  15. Ridgway, D., Broderick, G., and Ellison, M. J. (2006) Accommodating space, time and randomness in network simulation. Curr. Opin. Biotechnol. 17, 493–498.

    Article  Google Scholar 

  16. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W., Railsback, S., Thulke, H.-H., Weiner, J., and Wiegand, T. (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991.

    Article  Google Scholar 

  17. Grimm, V. and Railsback, S. F. (2005) Individual-Based Modeling and Ecology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  18. An, G. (2005) Multi-hierarchical agent-based modeling of the inflammatory aspects of the gut. J. Crit. Care 20, 383.

    Google Scholar 

  19. An, G. (2006) Integrative modeling of inflammation and organ function using agent based modeling. Shock 26, 2.

    Article  Google Scholar 

  20. Sappington, P. L., Han, X., Yang, R., Delude, R. L., and Fink, M. P. (2003) Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated caco-2 enterocytic monolayers. J. Pharmacol. Exp. Ther. 304, 464–476.

    Article  Google Scholar 

  21. Han, X., Uchiyama, T., Sappington, P. L., Yaguchi, A., Yang, R., Fink, M. P., and Delude, R. L. (2003) NAD+ ameliorates inflammation-induced epithelial barrier dysfunction in cultured enterocytes and mouse ileal mucosa. J. Pharmacol. Exp. Ther. 307, 443–449.

    Article  Google Scholar 

  22. Han, X., Fink, M. P., and Delude, R. L. (2003) Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19, 229–237.

    Article  Google Scholar 

  23. Matsushita, K., Morrell, C. N., Cambien, B., Yang, S. X., Yamakuchi, M., Bao, C., Hara, M. R., Quick, R. A., Cao, W., O'Rourke, B., Lowenstein, J. M., Pevsner, J., Wagner, D. D., and Lowenstein, C. J. (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150.

    Article  Google Scholar 

  24. Wilensky, U. (1999) NetLogo: http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling of Northwestern University, Evanston, IL.

    Google Scholar 

  25. Han, Y., Englert, J. A., Yang, R., Delude, R. L., and Fink, M. P. (2005) Ethyl pyruvate inhibits nuclear factor-kappaB-dependent signaling by directly targeting p65. J. Pharmacol. Exp. Ther. 312, 1097–1105.

    Article  Google Scholar 

  26. Tang, J., Hunt, C. A., Mellein, J., and Ley, K. (2004) Simulating leukocyte-venule interactions — a novel agent-oriented approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 4978–4981.

    Google Scholar 

  27. Hunt, C. A., Ropella, G. E., Yan, L., Hung, D. Y., and Roberts, M. S. (2006), Physiologically based synthetic models of hepatic disposition. J. Pharmacokinet. Pharmacodyn. 33, 737–772.

    Article  Google Scholar 

  28. Kirschner, D. E., Chang, S. T., Riggs, T. W., Perry, N., and Linderman, J. J. (2007) Toward a multiscale model of antigen presentation in immunity. Immunol. Rev. 216, 93–118.

    Google Scholar 

  29. Yan, L., Hunt, C. A., Ropella, G. E., and Roberts, M. S. (2004) In silico representation of the liver-connecting function to anatomy, physiology and heterogeneous microenvironments. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2, 853–856.

    Google Scholar 

  30. Wakeland, W., Macovsky, L., and An, G. (2007) A hybrid simulation for studying the acute inflammatory response. Proc. 2007 Spring Simulat. Multiconf. (Agent Directed Simulation Symposium) 1, 39–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

An, G. (2009). Dynamic Knowledge Representation Using Agent-Based Modeling: Ontology Instantiation and Verification of Conceptual Models. In: Maly, I. (eds) Systems Biology. Methods in Molecular Biology, vol 500. Humana Press. https://doi.org/10.1007/978-1-59745-525-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-525-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-64-0

  • Online ISBN: 978-1-59745-525-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics