Skip to main content

Location Proteomics: Systematic Determination of Protein Subcellular Location

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 500))

Summary

Proteomics seeks the systematic and comprehensive understanding of all aspects of proteins, and location proteomics is the relatively new subfield of proteomics concerned with the location of proteins within cells. This review provides a guide to the widening selection of methods for studying location proteomics and integrating the results into systems biology. Automated and objective methods for determining protein subcellular location have been described based on extracting numerical features from fluorescence microscope images and applying machine learning approaches to them. Systems to recognize all major protein subcellular location patterns in both two-dimensional and three-dimensional HeLa cell images with high accuracy (over 95% and 98%, respectively) have been built. The feasibility of objectively grouping proteins into subcellular location families, and in the process of discovering new subcellular patterns, has been demonstrated using cluster analysis of images from a library of randomly tagged protein clones. Generative models can be built to effectively capture and communicate the patterns in these families. While automated methods for high-resolution determination of subcellular location are now available, the task of applying these methods to all expressed proteins in many different cell types under many conditions represents a very significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakai, K. (2000) Protein sorting signals and prediction of subcellular localization. Adv. Protein Chem. 54, 277–344.

    Article  PubMed  CAS  Google Scholar 

  2. Park, K. J. and Kanehisa, M. (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19, 1656–1663.

    Article  PubMed  CAS  Google Scholar 

  3. Guda, C., Fahy, E., and Subramaniam, S. (2004) MITOPRED: A genome-scale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics 20, 1785–1794.

    Article  PubMed  CAS  Google Scholar 

  4. Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D. S., Poulin, B., Anvik, J., Macdonell, C., and Eisner, R. (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20, 547–556.

    Article  PubMed  CAS  Google Scholar 

  5. Chou, K. C., and Shen, H. B. (2006) Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem. Biophys. Res. Commun. 347, 150–157.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, C. S., Chen, Y. C., Lu, C. H., and Hwang, J. K. (2006) Prediction of protein subcellular localization. Proteins 64, 643–651.

    Article  PubMed  CAS  Google Scholar 

  7. Harris, M., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G., Blake, J., Bult, C., Dolan, M., Drabkin, H., Eppig, J., Hill, D., Ni, L., Ringwald, M., Balakrishnan, R., Cherry, J., Christie, K., Costanzo, M., Dwight, S., Engel, S., Fisk, D., Hirschman, J., Hong, E., Nash, R., Sethuraman, A., Theesfeld, C., Botstein, D., Dolinski, K., Feierbach, B., Berardini, T., Mundodi, S., Rhee, S., Apweiler, R., Barrell, D., Camon, E., Dimmer, E., Lee, V., Chisholm, R., Gaudet, P., Kibbe, W., Kishore, R., Schwarz, E., Sternberg, P., Gwinn, M., Hannick, L., Wortman, J., Berriman, M., Wood, V., de la Cruz, N., Tonellato, P., Jaiswal, P., Seigfried, T., and White, R. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261.

    Article  PubMed  CAS  Google Scholar 

  8. Tate, P., Lee, M., Tweedie, S., Skarnes, W. C., and Bickmore, W. A. (1998) Capturing novel mouse genes encoding chromosomal and other nuclear proteins. J. Cell Sci. 111, 2575–2585.

    PubMed  CAS  Google Scholar 

  9. Rolls, M. M., Stein, P. A., Taylor, S. S., Ha, E., McKeon, F., and Rapoport, T. A. (1999) A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J. Cell Biol. 146, 29–44.

    PubMed  CAS  Google Scholar 

  10. Misawa, K., Nosaka, T., Morita, S., Kaneko, A., Nakahata, T., Asano, S., and Kitamura, T. (2000) A method to identify cDNAs based on localization of green fluorescent protein fusion products. Proc. Natl Acad. Sci. USA 97, 3062–3066.

    Article  PubMed  CAS  Google Scholar 

  11. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R., and Wiemann, S. (2000) Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292.

    Article  PubMed  CAS  Google Scholar 

  12. Jarvik, J. W., Fisher, G. W., Shi, C., Hennen, L., Hauser, C., Adler, S., and Berget, P. B. (2002) In vivo functional proteomics: Mammalian genome annotation using CD-tagging. BioTechniques 33, 852–867.

    PubMed  CAS  Google Scholar 

  13. Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  14. Jarvik, J. W., Adler, S. A., Telmer, C. A., Subramaniam, V., and Lopez, A. J. (1996) CD-Tagging: A new approach to gene and protein discovery and analysis. BioTechniques 20, 896–904.

    PubMed  CAS  Google Scholar 

  15. Boland, M. V. and Murphy, R. F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17, 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, X., Velliste, M., Weinstein, S., Jarvik, J. W., and Murphy, R. F. (2003) Location proteomics — Building subcellular location trees from high resolution 3D fluorescence microscope images of randomly-tagged proteins. Proc. SPIE 4962, 298–306.

    Article  CAS  Google Scholar 

  17. Murphy, R. F., Velliste, M., and Porreca, G. (2003) Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Sig. Proc. 35, 311–321.

    Article  Google Scholar 

  18. Jiang, X. S., Zhou, H., Zhang, L., Sheng, Q. H., Li, S. J., Li, L., Hao, P., Li, Y. X., Xia, Q. C., Wu, J. R., and Zeng, R. (2004) A high-throughput approach for subcellular proteome: Identification of rat liver proteins using subcellular fractionation coupled with two-dimensional liquid chromatography tandem mass spectrometry and bioinformatic analysis. Mol. Cell. Proteomics 3, 441–455.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, X. and Murphy, R. F. (2005) Objective clustering of proteins based on subcellular location patterns. J. Biomed. Biotechnol. 2005, 87–95.

    Article  PubMed  Google Scholar 

  20. Drahos, K. L., Tran, H. C., Kiri, A. N., Lan, W., McRorie, D. K., and Horn, M. J. (2005) Comparison of Golgi apparatus and endoplasmic reticulum proteins from livers of juvenile and aged rats using a novel technique for separation and enrichment of organelles. J. Biomol. Tech. 16, 347–355.

    PubMed  Google Scholar 

  21. Schubert, W., Bonnekoh, B., Pmmer, A. J., Philipsen, L., Bockelmann, R., Malykh, Y., Gollnick, H., Friedenberger, M., Bode, M., and Dress, A. W. M. (2006) Analyzing proteome topology and function by automated multi-dimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278.

    Article  PubMed  CAS  Google Scholar 

  22. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Alaluf, I., Swerdlin, N., Perzov, N., Danon, T., Liron, Y., Raveh, T., Carpenter, A. E., Lahav, G., and Alon, U. (2006) Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nat. Methods 3, 525–531.

    Article  PubMed  CAS  Google Scholar 

  23. Garcia Osuna, E., Hua, J., Bateman, N., Zhao, T., Berget, P., and Murphy, R. (2007) Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Ann. Biomed. Eng. 35, 1081–1087.

    Article  PubMed  Google Scholar 

  24. Haralick, R., Shanmugam, K., and Dinstein, I. (1973) Textural features for image classification. IEEE Trans. Systems Man Cybernet. SMC-3, 610–621.

    Google Scholar 

  25. Boland, M. V., Markey, M. K., and Murphy, R. F. (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33, 366–375.

    Article  PubMed  CAS  Google Scholar 

  26. Adiga, P. S. and Chaudhuri, B. B. (2000) Region based techniques for segmentation of volumetric histo-pathological images. Comput. Methods Programs Biomed. 61, 23–47.

    Article  PubMed  CAS  Google Scholar 

  27. Velliste, M. and Murphy, R. F. (2002) Automated determination of protein subcellular locations from 3D fluorescence microscope images. Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging, 867–870.

    Google Scholar 

  28. Jones, T. R., Carpenter, A. E., and Golland, P. (2005) Voronoi-based segmentation of cells on image manifolds. ICCV Workshop on Computer Vision for Biomedical Image Applications, 535–543.

    Google Scholar 

  29. Chen, S.-C., Zhao, T., Gordon, G. J., and Murphy, R. F. (2006) A novel graphical model approach to segmenting cell images. Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 1–8.

    Google Scholar 

  30. 30. Coulot, L., Kirschner, H., Chebira, A., Moura, J. M. F., Kovacevic, J., Osuna, E. G., and Murphy, R. F. (2006) Topology preserving STACS segmentation of protein subcellular location images. Proceedings of the 2006 IEEE International Symposium on Biomedical Imaging, 566–569.

    Google Scholar 

  31. Daubechies, I. (1988) Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996.

    Article  Google Scholar 

  32. Daugman, J. D. (1988) Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics Speech Sig. Proc. 36, 1169–1179.

    Article  Google Scholar 

  33. Huang, K. and Murphy, R. F. (2004) Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinform. 5, 78.

    Article  Google Scholar 

  34. Chebira, A., Barbotin, Y., Jackson, C., Merryman, T., Srinivasa, G., Murphy, R. F., and Kovacevic, J. (2007) A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinform. 8, 210.

    Article  Google Scholar 

  35. Murphy, R. F. (2004) Automated interpretation of subcellular location patterns. 2004 IEEE International Symposium on Biomedical Imaging, 53–56.

    Google Scholar 

  36. Chen, X. and Murphy, R. F. (2004) Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1632–1635.

    Google Scholar 

  37. Ichimura, N. (1997) Robust clustering based on a maximum-likelihood method for estimating a suitable number of clusters. Syst. Comput. Jpn 28, 10–23.

    Article  Google Scholar 

  38. Thorley, J. L. and Page, R. M. (2000) RadCon: Phylogenetic tree comparison and consensus. Bioinformatics 16, 486–487.

    Article  PubMed  CAS  Google Scholar 

  39. Perlman, Z. E., Slack, M. D., Feng, Y., Mitchison, T. J., Wu, L. F., and Altschuler, S. J. (2004) Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198.

    Article  PubMed  CAS  Google Scholar 

  40. Huang, K. and Murphy, R. F. (2004) Automated classification of subcellular patterns in multicell images without segmentation into single cells. Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging, 1139–1142.

    Google Scholar 

  41. Newberg, J. Y. and Murphy, R. F. (2008) A framework for the automated analysis of subcellular patterns in human protein atlas images. J. Proteome Res. 7, 2300–2308.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, S.-C. and Murphy, R. F. (2006) A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images. BMC Bioinform. 7, 90.

    Article  CAS  Google Scholar 

  43. Chen, S.-C., Gordon, G., and Murphy, R. F. (2006) A novel approximate inference approach to automated classification of protein subcellular location patterns in multi-cell images. Proceedings of the 2006 IEEE International Symposium on Biomedical Imaging, 558–561.

    Google Scholar 

  44. Chen, S.-C., Gordon, G. J., and Murphy, R. F. (2008) Graphical models for structured classification, with an application to interpreting images of protein subcellular location patterns. J. Mach. Learning Res. 9, 651–682.

    Google Scholar 

  45. Zhao, T., Velliste, M., Boland, M. V., and Murphy, R. F. (2005) Object type recognition for automated analysis of protein subcellular location. IEEE Trans. Image Process. 14, 1351–1359.

    Article  PubMed  Google Scholar 

  46. Zhao, T. and Murphy, R. F. (2007) Automated learning of generative models for subcellular location: Building blocks for systems biology. Cytometry Part A 71A, 978–990.

    Google Scholar 

  47. Uhlen et al. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell Proteomics, 4, 1920–1932.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Newberg, J., Hua, J., Murphy, R. (2009). Location Proteomics: Systematic Determination of Protein Subcellular Location. In: Maly, I. (eds) Systems Biology. Methods in Molecular Biology, vol 500. Humana Press. https://doi.org/10.1007/978-1-59745-525-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-525-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-64-0

  • Online ISBN: 978-1-59745-525-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics