Skip to main content

The Practical Use of Cre and loxP Technologies in Mouse Auditory Research

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Gene manipulation, specifically in the hair cells of the inner ear during development and adulthood in mice, is crucial for understanding the physiology of hearing and the pathology of deafness in humans. Recent advances have demonstrated that gene expression can be manipulated in developing mouse hair cells in a spatially and temporally controlled manner. The Cre–loxP system has been widely used for such purposes. Many laboratories, including ours, have developed and characterized transgenic mouse lines that express or induce Cre activity specifically in inner ear hair cells. These Cre lines have been used with high efficiency to inactivate several genes such as Rb in hair cells. Here we discuss the use of these Cre lines in inner ear research with emphasis on practical issues for researchers who are not familiar with these particular techniques but are interested in using these Cre mice and floxed mice to inactivate genes of their interest specifically in inner ear hair cells. We provide detailed protocols for the use of these techniques and reagents. These considerations and protocols can be easily applied to other cell types in the inner ear and other parts of the auditory pathways. Because the NIH Knockout Mouse Project (KOMP) and the European Conditional Mouse Mutant Program (EUCOMM) have initiated plans to create conditional (floxed) knockout strains for every gene in the mouse genome and because numerous Cre-expressing mouse lines have already been created in various systems, including the nervous system, it is our hope that many hearing researchers will benefit from the detailed protocols and practical considerations described in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gao, J., Wu, X. and Zuo, J. (2004) Targeting hearing genes in mice. Brain Res. Mol. Brain Res. 132, 192–207.

    Article  CAS  PubMed  Google Scholar 

  2. Holt, J. R., Gillespie, S. K., Provance, D. W., Shah, K., Shokat, K. M., Corey, D. P., Mercer, J. A., and Gillespie, P. G. (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381.

    Article  CAS  PubMed  Google Scholar 

  3. Stauffer, E. A., Scarborough, J. D., Hirono, M., Miller, E. D., Shah, K., Mercer, J. A., Holt, J. R., and Gillespie, P. G. (2005) Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47, 541–553.

    Article  CAS  PubMed  Google Scholar 

  4. Zambrowicz, B. P., Abuin, A., Ramirez-Solis, R., Richter, L. J., Piggott, J., BeltrandelRio, H., et al. (2003) Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc. Natl. Acad. Sci. USA 100, 14109–14114.

    Article  PubMed  Google Scholar 

  5. Coates, C. J., Kaminski, J. M., Summers, J. B., Segal, D. J., Miller, A. D., and Kolb, A. F. (2005) Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol. 23, 407–419.

    Article  CAS  PubMed  Google Scholar 

  6. Tian, Y., James, S., Zuo, J., Fritzsch, B., and Beisel, K. W. (2006) Conditional and inducible gene recombineering in the mouse inner ear. Brain Res 1091, 243–254.

    Article  CAS  PubMed  Google Scholar 

  7. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109.

    Article  CAS  PubMed  Google Scholar 

  8. Zuo, J. (2002) Transgenic and gene targeting studies of hair cell function in mouse inner ear. J. Neurobiol. 53, 286–305.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995) Inducible gene targeting in mice. Science 269, 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  10. No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  CAS  PubMed  Google Scholar 

  11. Shimizu, E., Tang, Y. P., Rampon, C., and Tsien, J. Z. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation [In Process Citation]. Science 290, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  12. Utomo, A. R., Nikitin, A. Y., and Lee, W. H. (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat. Biotechnol. 17, 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  13. Bond, C. T., Herson, P. S., Strassmaier, T., Hammond, R., Stackman, R., Maylie, J., and Adelman, J. P. (2004) Small conductance Ca2+-activated K+channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24, 5301–5306.

    Article  CAS  PubMed  Google Scholar 

  14. Hammond, R. S., Bond, C. T., Strassmaier, T., Ngo-Anh, T. J., Adelman, J. P., Maylie, J., and Stackman, R. W. (2006) Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci. 26, 1844–1853.

    Article  CAS  PubMed  Google Scholar 

  15. Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, J. L., Chambon, P., and Metzger, D. (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc. Natl. Acad. Sci. USA 94, 14559–14563.

    Article  CAS  PubMed  Google Scholar 

  16. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326.

    Google Scholar 

  17. Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327.

    Article  CAS  PubMed  Google Scholar 

  18. Li, M., Indra, A. K., Warot, X., Brocard, J., Messaddeq, N., Kato, S., Metzger, D., and Chambon, P. (2000) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407, 633–636.

    Article  CAS  PubMed  Google Scholar 

  19. Auwerx, J., Avner, P., Baldock, R., Ballabio, A., Balling, R., Barbacid, M., et al. (2004) The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925–927.

    Article  CAS  PubMed  Google Scholar 

  20. Gong, S., Doughty, M., Harbaugh, C. R., Cummins, A., Hatten, M. E., Heintz, N., and Gerfen, C. R. (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823.

    Article  CAS  PubMed  Google Scholar 

  21. Hebert, J. M. and McConnell, S. K. (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev. Biol. 222, 296–306.

    Article  CAS  PubMed  Google Scholar 

  22. Matei, V., Pauley, S., Kaing, S., Rowitch, D., Beisel, K. W., Morris, K., Feng, F., Jones, K., Lee, J., and Fritzsch, B. (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 234, 633–650.

    Article  CAS  PubMed  Google Scholar 

  23. Ohyama, T. and Groves, A. K. (2004) Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis 38, 195–199.

    Article  CAS  PubMed  Google Scholar 

  24. Sage, C., Huang, M., Karimi, K., Gutierrez, G., Vollrath, M. A., Zhang, D. S., Garcia-Anoveros, J., Hinds, P. W., Corwin, J. T., Corey, D. P., and Chen, Z. Y. (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307, 1114–1118.

    Article  CAS  PubMed  Google Scholar 

  25. Sage, C., Huang, M., Vollrath, M. A., Brown, M. C., Hinds, P. W., Corey, D. P., Vetter, D. E., and Chen, Z. Y. (2006) Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc. Natl. Acad. Sci. USA 103, 7345–7350.

    Article  CAS  PubMed  Google Scholar 

  26. Li, M., Tian, Y., Fritzsch, B., Gao, J., Wu, X., and Zuo, J. (2004) Inner hair cell Cre-expressing transgenic mouse. Genesis 39, 173–177.

    Article  CAS  PubMed  Google Scholar 

  27. Tian, Y., Li, M., Fritzsch, B., and Zuo, J. (2004) Creation of a transgenic mouse for hair-cell gene targeting by using a modified bacterial artificial chromosome containing Prestin. Dev. Dyn. 231, 199–203.

    Article  CAS  PubMed  Google Scholar 

  28. Chow, L. M., Tian, Y., Weber, T., Corbett, M., Zuo, J., and Baker, S. J. (2006) Inducible Cre recombinase activity in mouse cerebellar granule cell precursors and inner ear hair cells. Dev. Dyn. 235, 2991–2998.

    Article  CAS  PubMed  Google Scholar 

  29. Editorial (2007) Toxic alert. Nature 449, 378.

    Article  Google Scholar 

  30. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain [letter]. Nat. Genet. 21, 70–71.

    Article  CAS  PubMed  Google Scholar 

  31. Novak, A., Guo, C., Yang, W., Nagy, A., and Lobe, C. G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155.

    Article  CAS  PubMed  Google Scholar 

  32. Goodrich, L. V. (2007) A genetic dissection of auditory circuit assembly and function. ARO MidWinter Meeting, 241.

    Google Scholar 

  33. Johnson, K. R. and Zheng, Q. Y. (2002) Ahl2, a second locus affecting age-related hearing loss in mice. Genomics 80, 461–464.

    Article  CAS  PubMed  Google Scholar 

  34. Ohlemiller, K. K. (2004) Age-related hearing loss: the status of Schuknecht’s typology. Curr. Opin. Otolaryngol. Head Neck Surg. 12, 439–443.

    PubMed  Google Scholar 

  35. Kujawa, S. G. and Liberman, M. C. (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J. Neurosci. 26, 2115–2123.

    Article  CAS  PubMed  Google Scholar 

  36. Huynh, K., Edge, R., Gao, J., Zuo, J., Dallos, P., and Cheatham, M. A. (2006) Anatomy and physiology of prestin knockout mice backcrossed to the CBA/CaJ strain. ARO Midwinter Meeting, Abstr. 379.

    Google Scholar 

  37. Kiermayer, C., Conrad, M., Schneider, M., Schmidt, J., and Brielmeier, M. (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45, 11–16.

    Google Scholar 

  38. Hong, S. B., Furihata, M., Baba, M., Zbar, B., and Schmidt, L. S. (2006) Vascular defects and liver damage by the acute inactivation of the VHL gene during mouse embryogenesis. Lab Invest. 86, 664–675.

    Article  CAS  PubMed  Google Scholar 

  39. Lantinga-van Leeuwen, I. S., Leonhard, W. N., van de Wal, A., Breuning, M. H., Verbeek, S., de Heer, E., and Peters, D. J. (2006) Transgenic mice expressing tamoxifen-inducible Cre for somatic gene modification in renal epithelial cells. Genesis 44, 225–232.

    Article  Google Scholar 

  40. Guo, C., Yang, W., and Lobe, C. G. (2002) A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (DC06471, DC05168, DC008800, CA21765) and the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital. J. Zuo is a recipient of a Hartwell Individual Biomedical Research Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yu, Y., Zuo, J. (2009). The Practical Use of Cre and loxP Technologies in Mouse Auditory Research. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics