Skip to main content

Atomic Force Microscopy in Studies of the Cochlea

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Abstract

The high sensitivity of mammalian hearing is achieved by amplification of the motion of the cochlear partition. The origin of this cochlear amplification is the elongation and contraction of outer hair cells (OHCs) in response to acoustical stimulation. This motility is made possible by a membrane protein embedded in the lateral membrane of OHCs. The gene of this protein has been identified and termed prestin. We, herein, present a method for observation by atomic force microscopy (AFM) of prestin expressed in the Chinese hamster ovary (CHO) cell plasma membrane. To obtain a stable sample for AFM imaging in liquid, we used as an example in the protocol provide here, CHO cells transfected with prestin or FLAG-tagged prestin, and untransfected CHO cells (1). The cells attached to a substrate were subjected to ultrasonic waves generated from a sonicator probe so that the inside-out plasma membranes remained on the substrate. Prestin was immunostained with mouse anti-FLAG primary antibody and FITC-conjugated goat anti-mouse IgG secondary antibody. The lipid of the plasma membrane was labeled with fluorescence probes. The cytoplasmic faces of the cells were then observed in liquid by the tapping mode of AFM at low and high magnifications. More particle-like structures 8–12  nm in diameter were observed in the plasma membranes of the prestin-transfected CHO cells than in those of the untransfected CHO cells. Since the difference between these two types of cells is due to the existence of prestin, such particle-like structures in the prestin-transfected CHO cells are possibly constituted by prestin.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Murakoshi, M., Gomi, T., Iida, K., Kumano, S., Tsumoto, K., Kumagai, I., Ikeda, K., Kobayashi, T., and Wada, H. (2006) Imaging by atomic force microscopy of the plasma membrane of prestin-transfected Chinese hamster ovary cells. J. Assoc. Res. Otolaryngol. 7, 267–278,

    Article  PubMed  Google Scholar 

  2. Dallos, P., Evans, B. N., and Hallworth, R. (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350, 155–157.

    Article  CAS  PubMed  Google Scholar 

  3. Brownell, W. E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y. (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227, 194–196.

    Article  CAS  PubMed  Google Scholar 

  4. Kachar, B., Brownell, W. E., Altschuler, R., and Fex, J. (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322, 365–368.

    Article  CAS  PubMed  Google Scholar 

  5. Ashmore, J. F. (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. 388, 323–347.

    Google Scholar 

  6. Santos-Sacchi, J., and Dilger, J. P. (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear. Res. 35, 143–150.

    Article  CAS  PubMed  Google Scholar 

  7. Liberman, M. C., Gao, J., He, D. Z., Wu, X., Jia, S., and Zuo, J. (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300–304.

    Article  CAS  PubMed  Google Scholar 

  8. Dallos, P. and Fakler, B. (2002) Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3, 104–111.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., and Dallos, P. (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–155.

    Article  CAS  PubMed  Google Scholar 

  10. Cheatham, M. A., Huynh, K. H., Gao, J., Zuo, J., and Dallos, P. (2004) Cochlear function in Prestin knockout mice. J. Physiol. 560, 821–830.

    Article  CAS  PubMed  Google Scholar 

  11. Arima, T., Kuraoka, A., Toriya, R., Shibata, Y., and Uemura, T. (1991) Quick-freeze, deep-etch visualization of the ‘cytoskeletal spring’ of cochlear outer hair cells. Cell Tissue Res. 263, 91–97.

    Article  CAS  PubMed  Google Scholar 

  12. Forge, A. (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res. 265, 473–483.

    Google Scholar 

  13. Kalinec, F., Holley, M. C., Iwasa, K. H., Lim, D. J., and Kachar, B. (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc. Natl. Acad. Sci. U.S.A. 89, 8671–8675.

    Article  CAS  PubMed  Google Scholar 

  14. Souter, M., Nevill, G., and Forge, A. (1995) Postnatal development of membrane specialisations of gerbil outer hair cells. Hear. Res. 91, 43–62.

    Article  CAS  PubMed  Google Scholar 

  15. Le Grimellec, C., Giocondi, M. C., Lenoir, M., Vater, M., Sposito, G., and Pujol, R. (2002) High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J. Comp. Neurol. 451, 62–69.

    Article  PubMed  Google Scholar 

  16. Wada, H., Usukura, H., Sugawara, M., Katori, Y., Kakehata, S., Ikeda, K., and Kobayashi, T. (2003) Relationship between the local stiffness of the outer hair cell along the cell axis and its ultrastructure observed by atomic force microscopy. Hear. Res. 177, 61–70.

    Article  PubMed  Google Scholar 

  17. Wada, H., Kimura, K., Gomi, T., Sugawara, M., Katori, Y., Kakehata, S., Ikeda, K., and Kobayashi, T. (2004) Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy. Hear. Res. 187, 51–62.

    Article  PubMed  Google Scholar 

  18. Mio, K., Kubo, Y., Ogura, T., Yamamoto, T., Arisaka, F., and Sato, C. (2008) The motor protein prestin is a bullet-shaped molecule with inner cavities. J. Biol. Chem. 283, 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  19. Inukai, K., Katagiri, H., Takata, K., Asano, T., Anai, M., Ishihara, H., Nakazaki, M., Kikuchi, M., Yazaki, Y., and Oka, Y. (1995) Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter. Endocrinology 136, 4850–4857.

    Article  CAS  PubMed  Google Scholar 

  20. Iida, K., Konno, K., Oshima, T., Tsumoto, K., Ikeda, K., Kumagai, I., Kobayashi, T., and Wada, H. (2003) Stable expression of the motor protein prestin in Chinese hamster ovary cells. JSME Int. J. 46C, 1266–1274.

    Google Scholar 

  21. Iida, K., Tsumoto, K., Ikeda, K., Kumagai, I., Kobayashi, T., and Wada, H. (2005) Construction of an expression system for the motor protein prestin in Chinese hamster ovary cells. Hear. Res. 205, 262–270.

    Article  CAS  PubMed  Google Scholar 

  22. Ziegler, U., Vinckier, A., Kernen, P., Zeisel, D., Biber, J., Semenza, G., Murer, H., and Groscurth, P. (1998) Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett. 436, 179–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Professor M. Sokabe (Nagoya University, Japan), Dr. D. Furness (Keele University, U.K.), Mr. A. Yagi (Olympus, Japan), and Professor D. He (Creighton University, U.S.A.) for their helpful suggestions and comments. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas 15086202 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by a Health and Labour Science Research Grant from the Ministry of Health, Labour and Welfare of Japan, and by a grant from the Human Frontier Science Program to H.W., and by a Grant-in-Aid for JSPS Fellows 19002194 from the Japan Society for the Promotion of Science and by Special Research Grants 11170012 and 11180001 from the Tohoku University 21st Century COE Program of the “Future Medical Engineering Based on Bio-nanotechnology” to M.M.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murakoshi, M., Wada, H. (2009). Atomic Force Microscopy in Studies of the Cochlea. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics