Skip to main content

RNA Isolation from Xenopus Inner Ear Sensory Endorgans for Transcriptional Profiling and Molecular Cloning

  • Protocol
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Abstract

The amphibian Xenopus offers a unique model system for uncovering the genetic basis of auditory and vestibular function in an organism that is well-suited for experimental manipulation during animal development. However, many procedures for analyzing gene expression in the peripheral auditory and vestibular systems mandate the ability to isolate intact RNA from inner ear tissue. Methods presented here facilitate preparation of high quality inner ear RNA from larval and post-metamorphic Xenopus specimens that can be used for a variety of purposes. We demonstrate that RNA isolated with these protocols is suitable for microarray analysis of inner ear organs, and for cloning of large transcripts, such as those for ion channels. Genetic sequences cloned with these procedures can be used for transient transfection of Xenopus kidney cell lines with GFP fusion constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinsley, R. C. and Kobel, H. R. (ed.) (1996) Biology of Xenopus. Oxford University Press, Oxford.

    Google Scholar 

  2. Nieuwkoop, P. D. and Faber, J. (ed.) (1967) Normal Table of Xenopus laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized egg Till the End of Metamorphosis. 2nd Edition. North-Holland Publishing, Co., Amsterdam.

    Google Scholar 

  3. Amaya, E. (2005) Xenomics. Genome Res. 15, 1683–1691.

    Article  CAS  PubMed  Google Scholar 

  4. Showell, C. and Conlon, F. L. (2007) Decoding development in Xenopus tropicalis. Genesis 45, 418–426.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz, M. E., Varela, A., and Serrano, E. E. (1995) Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development. Hear. Res. 9, 33–42.

    Article  Google Scholar 

  6. Serrano, E. E., Trujillo-Provencio, C., Sultemeier, D., Bullock, W. M., and Quick, Q. A. (2001) Identification of genes expressed in the Xenopus inner ear. Cell. Mol. Biol. 47, 1229–1239.

    CAS  PubMed  Google Scholar 

  7. Quick, Q. A. and Serrano, E. E. (2005) Inner ear formation during the early larval development of Xenopus laevis. Dev. Dyn. 234, 791–801.

    Article  CAS  Google Scholar 

  8. Varela-Ramirez, A., Trujillo-Provencio, C., and Serrano, E. E. (1998) Detection of transcripts for delayed rectifier potassium channels in the Xenopus laevis inner ear. Hear. Res. 119, 125–134.

    CAS  Google Scholar 

  9. Sultemeier, D. R., Provencio-Trujillo, C., and Serrano, E. E. (2007) Cloning and characterization of Xenopus inner ear calcium-activated potassium channel α- and α-subunits. ARO. Abstr. 30:740.

    Google Scholar 

  10. Gabashvili, I. S., Sokolowski, B. H., Morton, C. C., and Giersch, A. B. (2007) Ion channel gene expression in the inner ear. J. Assoc. Res. Otolaryngol. 8, 305–328.

    Article  PubMed  Google Scholar 

  11. Schlosser, G. and Northcutt, R. G. (2000) Development of neurogenic placodes in Xenopus laevis. J. Comp. Neurol. 418, 121–146.

    Article  CAS  Google Scholar 

  12. Humes, H. D. (1999) Insights into ototoxicity: Analogies to nephrotoxicity. Ann. N. Y. Acad. Sci. 884, 15–18.

    CAS  PubMed  Google Scholar 

  13. Powers, T., Trujillo-Provencio, C., Whittaker, C., and Serrano, E. E. (2007) Gene expression profiling of Xenopus organs yields insight into the Xenopus inner ear transcriptome. ARO. Abstr. 30:741.

    Google Scholar 

  14. Sultemeier, D. R., Knight, V. B., Manuelito, S. J., Hopkins, M., and Serrano, E. E. (2005) Heterologous and homologous expression systems for functional analysis of Xenopus inner ear genes. ARO. Abstr. 28:28.

    Google Scholar 

  15. Agilent Technologies, Inc. (2003) Reagent Kit Guide: RNA 6000 Nano Assay. November 2003 Edition, Germany.

    Google Scholar 

  16. Petersen, M. B. and Willems, P. J. (2006) Non-syndromic, autosomal-recessive deafness. Clin. Genet. 69, 371–392.

    Article  CAS  PubMed  Google Scholar 

  17. Ambion Inc. (2008) The basics: RNase control. http://www.ambion.com/techlib/basics/rnasecontrol/index.html

  18. Nasco. (2008). Animal Protocol for Xenopus laevis, African Clawed Frog Colony. http://www.enasco.com/Static.do?page=xen_rcare

  19. Grainger Lab. (2001) Grainger Lab X. tropicalis Adult Husbandry Protocol. http://faculty.virginia.edu/xtropicalis/husbandry/TropadultcareNew.htm

  20. University of Arizona: IACUC Learning Module – Xenopus laevis. (2008) Care and Handling of Xenopus laevis. http://www.iacuc.arizona.edu/training/xenopus/.

  21. Center for Biological Sequence Analysis. (2007) HMMgene v. 1.1 Program. http://www.cbs.dtu.dk/services/HMMgene/

Download references

Acknowledgments

The authors thank Joanna Beeson for technical support with cell culture experiments, and Alicia Arguelles and Erica Koval for their assistance with manuscript preparation. We are grateful to Dr. Charlie Whittaker, of the MIT Center for Cancer Research, and to Manlin Luo and Dr. Rebecca Fry, of the MIT BioMicro Center, for their technical assistance and generous advice. We also acknowledge Dr. Peter Sorger and members of the MIT Cell Decision Processes Center for stimulating intellectual interactions and for facilitating access to essential equipment and computing resources. Funding for this research was provided by awards from the National Institutes of Health (NIGMS-MORE S06GM008136, NIDCD R01DC003292, and NIGMS P50GM068762).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Trujillo-Provencio, C., Powers, T.R., Sultemeier, D.R., Serrano, E.E. (2009). RNA Isolation from Xenopus Inner Ear Sensory Endorgans for Transcriptional Profiling and Molecular Cloning. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics