Skip to main content

Quantitative Analysis of Somatic Mitochondrial DNA Mutations by Single-Cell Single-Molecule PCR

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 554))

Abstract

Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and “jumping” PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wallace, D.C. (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76, 781–821.

    Article  CAS  PubMed  Google Scholar 

  2. Kraytsberg, Y. and Khrapko, K. (2005) Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations. Expert Rev Mol Diagn 5, 809–815.

    Article  CAS  PubMed  Google Scholar 

  3. Jeffreys, A.J., Neumann, R. and Wilson, V. (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485.

    Article  CAS  PubMed  Google Scholar 

  4. Ruano, G., Kidd, K.K. and Stephens, J.C. (1990) Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules. Proc Natl Acad Sci U S A 87, 6296–6300.

    Article  CAS  PubMed  Google Scholar 

  5. Lukyanov, K.A., Matz, M.V., Bogdanova, E.A., Gurskaya, N.G. and Lukyanov, S.A. (1996) Molecule by molecule PCR amplification of complex DNA mixtures for direct sequencing: an approach to in vitro cloning. Nucleic Acids Res 24, 2194–2195.

    Article  CAS  PubMed  Google Scholar 

  6. Vogelstein, B. and Kinzler, K.W. (1999) Digital PCR. Proc Natl Acad Sci U S A 96, 9236–9241.

    Article  CAS  PubMed  Google Scholar 

  7. Mitra, R.D., Butty, V.L., Shendure, J., Williams, B.R., Housman, D.E. and Church, G.M. (2003) Digital genotyping and haplotyping with polymerase colonies. Proc Natl Acad Sci U S A 100, 5926–5931.

    Article  CAS  PubMed  Google Scholar 

  8. Mitra, R.D., Shendure, J., Olejnik, J., Edyta Krzymanska, O. and Church, G.M. (2003) Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320, 55–65.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, J., Shendure, J., Mitra, R.D. and Church, G.M. (2003) Single molecule profiling of alternative pre-mRNA splicing. Science 301, 836–838.

    Article  CAS  PubMed  Google Scholar 

  10. Dressman, D., Yan, H., Traverso, G., Kinzler, K.W. and Vogelstein, B. (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100, 8817–8822.

    Article  CAS  PubMed  Google Scholar 

  11. Li, M., Diehl, F., Dressman, D., Vogelstein, B. and Kinzler. K.W. (2006) BEAMing up for detection and quantification of rare sequence variants. Nat Methods 3, 95–97.

    Article  CAS  PubMed  Google Scholar 

  12. Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. and Welch, D.M. (2007) Accuracy and quality of massively Parallel DNA pyrosequencing. Genome Biol 8, R143.

    Article  PubMed  Google Scholar 

  13. Jahangir Tafrechi, R.S., van de Rijke, F.M., Allallou, A., Larsson, C., Sloos, W.C., van de Sande, M., Wahlby, C., Janssen, G.M. et al. (2007) Single-cell A3243G mitochondrial DNA mutation load assays for segregation analysis. J Histochem Cytochem 55, 1159–1166.

    Article  PubMed  Google Scholar 

  14. Braslavsky, I., Hebert, B., Kartalov, E. and Quake, S.R. 2003. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100, 3960–3964.

    Article  CAS  PubMed  Google Scholar 

  15. Ryan, D., Rahimi, M., Lund, J., Mehta, R. and Parviz, B.A. (2007) Toward nanoscale genome sequencing. Trends Biotechnol 25, 385–389.

    Article  CAS  PubMed  Google Scholar 

  16. Diehl, F. and Diaz, Jr., L.A. (2007) Digital quantification of mutant DNA in cancer patients. Curr Opin Oncol 19, 36–42.

    Article  CAS  PubMed  Google Scholar 

  17. Paabo, S., Irwin, D.M. and Wilson, A.C. (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265, 4718–4721.

    CAS  PubMed  Google Scholar 

  18. Kajander, O.A., Kunnas, T.A., Perola, M., Lehtinen, S.K., Karhunen, P.J. and Jacobs, H.T. (1999) Long-extension PCR to detect deleted mitochondrial DNA molecules is compromised by technical artefacts. Biochem Biophys Res Commun 254, 507–514.

    Article  CAS  PubMed  Google Scholar 

  19. Pavlov, A.R., Pavlova, N.V., Kozyavkin, S.A. and Slesarev, A.I. (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22, 253–260.

    Article  CAS  PubMed  Google Scholar 

  20. Kraytsberg, Y., Nekhaeva, E., Chang, C., Ebralidse, E. and Khrapko, K. (2004) Analysis of somatic mutations via long-distance single molecule PCR . In V.V. Demidov and N.E. Broude (ed.), DNA AMPLIFICATION: Current Technologies and Applications. Horizon Bioscience.

    Google Scholar 

  21. Eckert, K.A. and Kunkel, T.A. (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl 1, 17–24.

    CAS  PubMed  Google Scholar 

  22. Cline, J., Braman, J.C. and Hogrefe, H.H. (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24, 3546–3551.

    Article  CAS  PubMed  Google Scholar 

  23. Sikorsky, J.A., Primerano, D.A., Fenger, T.W. and Denvir, J. (2007) DNA damage reduces Taq DNA polymerase fidelity and PCR amplification efficiency. Biochem Biophys Res Commun 355, 431–437.

    Article  CAS  PubMed  Google Scholar 

  24. Kraytsberg, Y., Schwartz, M., Brown, T.A., Ebralidse, K., Kunz, W.S., Clayton, D.A., Vissing, J. and Khrapko, K. (2004) Recombination of human mitochondrial DNA. Science 304, 981.

    Article  CAS  PubMed  Google Scholar 

  25. Moraes, C.T., Atencio, D.P., Oca-Cossio, J. and Diaz, F. (2003) Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J Mol Diagn 5, 197–208.

    CAS  PubMed  Google Scholar 

  26. Sugimoto, K., Makihara, T., Saito, A., Ohishi, N., Nagase, T. and Takai, D. (2005) Betaine improved restriction digestion. Biochem Biophys Res Commun 337, 1027–1029.

    Article  CAS  PubMed  Google Scholar 

  27. Nekhaeva, E., Bodyak, N.D., Kraytsberg, Y., McGrath, S.B., Van Orsouw, N.J., Pluzhnikov, A., Wei, J.Y., Vijg, J., et al. (2002) Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci U S A 99, 5521–5526.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, R.W., Taylor, G.A., Durham, S.E. and Turnbull, D.M. (2001) The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 29, E74–74.

    Google Scholar 

  29. Sciacco, M., Bonilla, E., Schon, E.A., DiMauro, S. and Moraes, C.T. (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3, 13–19.

    Article  CAS  PubMed  Google Scholar 

  30. Schinogl, P., Muller, M. and Steinborn, R. (2001) Quantification of the 4977-bp deletion in human mitochondrial DNA using real-time PCR. Forensic Sci Int 122, 197–199.

    Article  CAS  PubMed  Google Scholar 

  31. Poe, B.G., Navratil, M. and Arriaga, E.A. (2007) Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal Biochem 362, 193–200.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, C., Baumer, A., Maxwell, R.J., Linnane, A.W. and Nagley, P. (1992) Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett 297, 34–38.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, C., Lee, A., Liu, V.W., Pepe, S., Rosenfeldt, F. and Nagley, P. (1999) Mitochondrial DNA deletions in human cardiac tissue show a gross mosaic distribution. Biochem Biophys Res Commun 254, 152–157.

    Article  CAS  PubMed  Google Scholar 

  34. Bai, R.K. and Wong, L.J. (2005) Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn 7, 613–622.

    CAS  PubMed  Google Scholar 

  35. Vermulst, M., Wanagat, J., Kujoth, G.C., Bielas, J.H., Rabinovitch, P.S., Prolla, T.A. and Loeb, L.A. (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40, 392–394.

    Article  CAS  PubMed  Google Scholar 

  36. Bodyak, N.D., Nekhaeva, E., Wei, J.Y. and Khrapko, K. (2001) Quantification and sequencing of somatic deleted mtDNA in single cells: evidence for partially duplicated mtDNA in aged human tissues. Hum Mol Genet 10, 17–24.

    Article  CAS  PubMed  Google Scholar 

  37. Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., et al. (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38, 515–517.

    Article  CAS  PubMed  Google Scholar 

  38. Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W. and Khrapko, K. (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38, 518–520.

    Article  CAS  PubMed  Google Scholar 

  39. Naini, A. and Shanske, S. (2007) Detection of mutations in mtDNA. Methods Cell Biol 80, 437–463.

    Article  CAS  PubMed  Google Scholar 

  40. Piggee, C.A., Muth, J., Carrilho, E. and Karger, B.L. (1997) Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J Chromatogr A 781, 367–375.

    Article  CAS  PubMed  Google Scholar 

  41. Chinnery, P.F., Brown, D.T., Andrews, R.M., Singh-Kler, R., Riordan-Eva, P., Lindley, J., Applegarth, D.A., Turnbull, D.M., et al. (2001) The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. Brain 124, 209–218.

    Article  CAS  PubMed  Google Scholar 

  42. Wong, L.J. and Bai, R.K. (2006) Real-time quantitative polymerase chain reaction analysis of mitochondrial DNA point mutation. Methods Mol Biol 335, 187–200.

    CAS  PubMed  Google Scholar 

  43. Gibson, N.J. (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363, 32–47.

    Article  CAS  PubMed  Google Scholar 

  44. Lim, K.S., Naviaux, R.K. and Haas, R.H. (2007) Quantitative mitochondrial DNA mutation analysis by denaturing HPLC. Clin Chem 53, 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  45. Ragoussis, J., Elvidge, G.P., Kaur, K. and Colella, S. (2006) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLoS Genet 2, e100.

    Article  PubMed  Google Scholar 

  46. Mashima, Y., Nagano, M., Funayama, T., Zhang, Q., Egashira, T., Kudho, J., Shimizu, N. and Oguchi, Y. (2004) Rapid quantification of the heteroplasmy of mutant mitochondrial DNAs in Leber's hereditary optic neuropathy using the Invader technology. Clin Biochem 37, 268–276.

    Article  CAS  PubMed  Google Scholar 

  47. Cassandrini, D., Calevo, M.G., Tessa, A., Manfredi, G., Fattori, F., Meschini, M.C., Carrozzo, R., Tonoli, E., et al. (2006) A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Biophys Res Commun 342, 387–393.

    Article  CAS  PubMed  Google Scholar 

  48. Singh, R., Ellard, S., Hattersley, A. and Harries, L.W. (2006) Rapid and sensitive real-time polymerase chain reaction method for detection and quantification of 3243A>G mitochondrial point mutation. J Mol Diagn 8, 225–230.

    Article  CAS  PubMed  Google Scholar 

  49. White, H.E., Durston, V.J., Seller, A., Fratter, C., Harvey, J.F. and Cross, N.C. (2005) Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing. Genet Test 9, 190–199.

    Article  CAS  PubMed  Google Scholar 

  50. Csako, G. (2006) Present and future of rapid and or high-throughput methods for nucleic acid testing. Clin Chim Acta 363, 6–31.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, S., Higuchi, R. and Stoneking, M. (1994) Complete mitochondrial genome amplification. Nat Genet 7, 350–351.

    Article  CAS  PubMed  Google Scholar 

  52. Sauer, S. (2006) Typing of single nucleotide polymorphisms by MALDI mass spectrometry: principles and diagnostic applications. Clin Chim Acta 363, 95–105.

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, Y., Hall, T.A., Hofstadler, S.A. and Naviaux, R.K. (2007) Mitochondrial DNA mutation detection by electrospray mass spectrometry. Clin Chem 53, 195–203.

    Article  CAS  PubMed  Google Scholar 

  54. Linnartz, B., Anglmayer, R. and Zanssen, S. (2004) Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes. Cancer Res 64, 1966–1971.

    Article  CAS  PubMed  Google Scholar 

  55. Jazin, E.E., Cavelier, L., Eriksson, I., Oreland, L. and Gyllensten, U. (1996) Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci U S A 93, 12382–12387.

    Article  CAS  PubMed  Google Scholar 

  56. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. and Attardi, G. (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779.

    Article  CAS  PubMed  Google Scholar 

  57. Fayet, G., Jansson, M., Sternberg, D., Moslemi, A.R., Blondy, P., Lombes, A., Fardeau, M. and Oldfors, A. (2002) Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12, 484–493.

    Article  PubMed  Google Scholar 

  58. Michikawa, Y. and Attardi, G. (2002) Screening for aging-dependent point mutations in mtDNA. Methods Mol Biol 197, 75–92.

    CAS  PubMed  Google Scholar 

  59. Wong, L.J., Liang, M.H., Kwon, H., Park, J., Bai, R.K. and Tan, D.J. (2002) Comprehensive scanning of the entire mitochondrial genome for mutations. Clin Chem 48, 1901–1912.

    CAS  PubMed  Google Scholar 

  60. Conley, Y.P., Brockway, H., Beatty, M. and Kerr, M.E. (2003) Qualitative and quantitative detection of mitochondrial heteroplasmy in cerebrospinal fluid using denaturing high-performance liquid chromatography. Brain Res Brain Res Protoc 12, 99–103.

    Article  CAS  PubMed  Google Scholar 

  61. Biggin, A., Henke, R., Bennetts, B., Thorburn, D.R. and Christodoulou, J. (2005) Mutation screening of the mitochondrial genome using denaturing high-performance liquid chromatography. Mol Genet Metab 84, 61–74.

    Article  CAS  PubMed  Google Scholar 

  62. Meierhofer, D., Mayr, J.A., Ebner, S., Sperl, W. and Kofler, B. (2005) Rapid screening of the entire mitochondrial DNA for low-level heteroplasmic mutations. Mitochondrion 5, 282–296.

    Article  CAS  PubMed  Google Scholar 

  63. Wulfert, M., Tapprich, C. and Gattermann, N. (2006) Optimized PCR fragments for heteroduplex analysis of the whole human mitochondrial genome with denaturing HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 831, 236–247.

    Article  CAS  PubMed  Google Scholar 

  64. Jacobs, L., Gerards, M., Chinnery, P., Dumoulin, J., de Coo, I., Geraedts, J. and Smeets, H. (2007) mtDNA point mutations are present at various levels of heteroplasmy in human oocytes. Mol Hum Reprod 13, 149–154.

    Article  CAS  PubMed  Google Scholar 

  65. Bannwarth, S., Procaccio, V. and Paquis-Flucklinger, V. (2005) Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects. Hum Mutat 25, 575–582.

    Article  CAS  PubMed  Google Scholar 

  66. Maitra, A., Cohen, Y., Gillespie, S.E., Mambo, E., Fukushima, N., Hoque, M.O., Shah, N., Goggins, M., et al. (2004). The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 14, 812–819.

    Article  CAS  PubMed  Google Scholar 

  67. Kraytsberg, Y., Nicholas, A. and Khrapko, K. (2007) Are somatic mitochondrial DNA mutations relevant to our health? A challenge for mutation analysis techniques. Expert Opin Mol Diagn 1, 1–8.

    Article  Google Scholar 

  68. Zheng, W., Marcelino, L.A. and Thilly, W.G. (2002) Scanning low-frequency point mutants in the mitochondrial genome using constant denaturant capillary electrophoresis. Methods Mol Biol 197, 93–106.

    CAS  PubMed  Google Scholar 

  69. Bielas, J.H. and Loeb, L.A. (2005) Quantification of random genomic mutations. Nat Methods 2, 285–290.

    Article  CAS  PubMed  Google Scholar 

  70. Greenberg, B.D., Newbold, J.E. and Sugino, A. (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21, 33–49.

    Article  CAS  PubMed  Google Scholar 

  71. Monnat, R.J., Jr. and Loeb, L.A. (1985) Nucleotide sequence preservation of human mitochondrial DNA. Proc Natl Acad Sci U S A 82, 2895–2899.

    Article  CAS  PubMed  Google Scholar 

  72. Bodenteich, A., Mitchell, L.G. and Merril, C.R. (1991) A lifetime of retinal light exposure does not appear to increase mitochondrial mutations. Gene 108, 305–309.

    Article  CAS  PubMed  Google Scholar 

  73. Kovalenko, S.A., Tanaka, M., Yoneda, M., Iakovlev, A.F. and Ozawa, T. (1996) Accumulation of somatic nucleotide substitutions in mitochondrial DNA associated with the 3243 A-to-G tRNA(leu)(UUR) mutation in encephalomyopathy and cardiomyopathy. Biochem Biophys Res Commun 222, 201–207.

    Article  CAS  PubMed  Google Scholar 

  74. Simon, D.K., Lin, M.T., Ahn, C.H., Liu, G.J., Gibson, G.E., Beal, M.F. and Johns, D.R. (2001) Low mutational burden of individual acquired mitochondrial DNA mutations in brain. Genomics 73, 113–116.

    Article  CAS  PubMed  Google Scholar 

  75. Lin, M.T., Simon, D.K., Ahn, C.H., Kim, L.M. and Beal, M.F. (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet 11, 133–145.

    Article  CAS  PubMed  Google Scholar 

  76. Khaidakov, M., Heflich, R.H., Manjanatha, M.G., Myers, M.B. and Aidoo, A. (2003) Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat Res 526, 1–7.

    CAS  PubMed  Google Scholar 

  77. Del Bo, R., Crimi, M. Sciacco, M., Malferrari, G., Bordoni, A., Napoli, L., Prelle, A., Biunno, I., et al. (2003) High mutational burden in the mtDNA control region from aged muscles: a single-fiber study. Neurobiol Aging 24, 829–838.

    Article  CAS  PubMed  Google Scholar 

  78. Cantuti-Castelvetri, I., Lin, M.T., Zheng, K., Keller-McGandy, C.E., Betensky, R.A., Johns, D.R., Beal, M.F., Standaert, D.G., et al. (2005) Somatic mitochondrial DNA mutations in single neurons and glia. Neurobiol Aging 26, 1343–1355.

    Article  CAS  PubMed  Google Scholar 

  79. Kurz, M. (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4, 6.

    PubMed  Google Scholar 

  80. Du, Y., Davisson, M.T., Kafadar, K. and Gardiner, K. (2006) A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains. Gene 382, 39–46.

    Article  CAS  PubMed  Google Scholar 

  81. Dawson, B. and Trapp, R.G. 2004. Basic & Clinical Biostatistics. McGraw-Hill, New York.

    Google Scholar 

  82. Newcombe, R.G. (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17, 857–872.

    Article  CAS  PubMed  Google Scholar 

  83. Cochran, W.G. (1977) Sampling Techniques. Wiley, New York.

    Google Scholar 

  84. Ghosh, M. (1991) Handbook of Sequential Analysis. CRC, Boca Raton, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kraytsberg, Y., Bodyak, N., Myerow, S., Nicholas, A., Ebralidze, K., Khrapko, K. (2009). Quantitative Analysis of Somatic Mitochondrial DNA Mutations by Single-Cell Single-Molecule PCR. In: Stuart, J.A. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 554. Humana Press. https://doi.org/10.1007/978-1-59745-521-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-521-3_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-60-2

  • Online ISBN: 978-1-59745-521-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics