Skip to main content

Analysis of Mitochondrial DNA by Two-Dimensional Agarose Gel Electrophoresis

  • Protocol
Book cover Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 554))

Abstract

In higher vertebrates, the DNA of mitochondria takes the form of circular molecules of approximately 16 kbp. These circles are arranged in multigenomic nucleoprotein complexes or nucleoids. It is envisaged that nucleoid superstructure makes a critical contribution to the twin processes of replication and segregation of mtDNA. Replication intermediates can be isolated from cells or solid tissues and separated on agarose gels in two dimensions to reveal a wealth of data on mechanisms of DNA replication. Using this technique we have demonstrated that many molecules of replicating mtDNA have extensive regions of RNA: DNA hybrid in higher vertebrates. More recently, we have extracted mitochondrial nucleoprotein and analyzed it by the same method to derive information on the distribution of DNA-binding proteins on mitochondrial DNA. Here we describe the procedures used to isolate intact mitochondrial replication intermediates from liver and cultured cells of higher vertebrates and the process of separating DNA fragments on neutral two-dimensional agarose gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spelbrink, J.N., Li, F.Y., Tiranti, V., Nikali, K., Yuan, Q.P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L. et al. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet, 28, 223–31.

    Article  CAS  PubMed  Google Scholar 

  2. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J.J. and Van Broeckhoven, C. (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet, 28, 211–2.

    Article  PubMed  Google Scholar 

  3. Holt, I.J., Harding, A.E. and Morgan-Hughes, J.A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331, 717–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M., Elsas, L.J., 2nd and Nikoskelainen, E.K. (1988) Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science (New York, N.Y, 242, 1427–30.

    Article  CAS  Google Scholar 

  5. Bourgeron, T., Chretien, D., Rotig, A., Munnich, A. and Rustin, P. (1993) Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J Biol Chem, 268, 19369–76.

    CAS  PubMed  Google Scholar 

  6. Dunbar, D.R., Moonie, P.A., Jacobs, H.T. and Holt, I.J. (1995) Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci U S A, 92, 6562–6.

    Article  CAS  PubMed  Google Scholar 

  7. Holt, I.J., Dunbar, D.R. and Jacobs, H.T. (1997) Behaviour of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background. Hum Mol Genet, 6, 1251–60.

    Article  CAS  PubMed  Google Scholar 

  8. Brewer, B.J. and Fangman, W.L. (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell, 51, 463–71.

    Article  CAS  PubMed  Google Scholar 

  9. Brewer, B.J. and Fangman, W.L. (1991) Mapping replication origins in yeast chromosomes. Bioessays, 13, 317–22.

    Article  CAS  PubMed  Google Scholar 

  10. Brun, C., Dijkwel, P.A., Little, R.D., Hamlin, J.L., Schildkraut, C.L. and Huberman, J.A. (1995) Yeast and mammalian replication intermediates migrate similarly in two-dimensional gels. Chromosoma, 104, 92–102.

    Article  CAS  PubMed  Google Scholar 

  11. Dijkwel, P.A. and Hamlin, J.L. (1997) Mapping replication origins by neutral/neutral two-dimensional gel electrophoresis. Methods, 13, 235–45.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman, K.L. and Brewer, B.J. (1995) Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol, 262, 613–27.

    Article  CAS  PubMed  Google Scholar 

  13. Kalejta, R.F. and Hamlin, J.L. (1996) Composite patterns in neutral/neutral two-dimensional gels demonstrate inefficient replication origin usage. Mol Cell Biol, 16, 4915–22.

    CAS  PubMed  Google Scholar 

  14. Kuzminov, A., Schabtach, E. and Stahl, F.W. (1997) Study of plasmid replication in Escherichia coli with a combination of 2D gel electrophoresis and electron microscopy. J Mol Biol, 268, 1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Little, R.D. and Schildkraut, C.L. (1995) Initiation of latent DNA replication in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Mol Cell Biol, 15, 2893–903.

    CAS  PubMed  Google Scholar 

  16. Schvartzman, J.B., Martinez-Robles, M.L. and Hernandez, P. (1993) The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis. Nucleic Acids Res, 21, 5474–9.

    Article  CAS  PubMed  Google Scholar 

  17. van Brabant, A.J., Hunt, S.Y., Fangman, W.L. and Brewer, B.J. (1998) Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places. Electrophoresis, 19, 1239–46.

    Article  PubMed  Google Scholar 

  18. Brewer, B.J. and Fangman, W.L. (1988) A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell, 55, 637–43.

    Article  CAS  PubMed  Google Scholar 

  19. Brewer, B.J., Lockshon, D. and Fangman, W.L. (1992) The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell, 71, 267–76.

    Article  CAS  PubMed  Google Scholar 

  20. Viguera, E., Hernandez, P., Krimer, D.B., Boistov, A.S., Lurz, R., Alonso, J.C. and Schvartzman, J.B. (1996) The ColE1 unidirectional origin acts as a polar replication fork pausing site. J Biol Chem, 271, 22414–21.

    Article  CAS  PubMed  Google Scholar 

  21. Reyes, A., Yang, M.Y., Bowmaker, M. and Holt, I.J. (2005) Bidirectional replication initiates at sites throughout the mitochondrial genome of birds. J Biol Chem, 280, 3242–50.

    Article  CAS  PubMed  Google Scholar 

  22. Holt, I.J., Lorimer, H.E. and Jacobs, H.T. (2000) Coupled leading-and lagging-strand synthesis of mammalian mitochondrial DNA. Cell, 100, 515–24.

    Article  CAS  PubMed  Google Scholar 

  23. Linskens, M.H. and Huberman, J.A. (1990) Ambiguities in results obtained with 2D gel replicon mapping techniques. Nucleic Acids Res, 18, 647–52.

    Article  CAS  PubMed  Google Scholar 

  24. Bowmaker, M., Yang, M.Y., Yasukawa, T., Reyes, A., Jacobs, H.T., Huberman, J.A. and Holt, I.J. (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem, 278, 50961–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dijkwel, P.A., Vaughn, J.P. and Hamlin, J.L. (1994) Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res, 22, 4989–96.

    Article  CAS  PubMed  Google Scholar 

  26. Trivedi, A., Waltz, S.E., Kamath, S. and Leffak, M. (1998) Multiple initiations in the cmyc replication origin independent of chromosomal location. DNA Cell Biol, 17, 885–96.

    Article  CAS  PubMed  Google Scholar 

  27. Yasukawa, T., Reyes, A., Cluett, T.J., Yang, M.Y., Bowmaker, M., Jacobs, H.T. and Holt, I.J. (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J, 25, 5358–71.

    Article  CAS  PubMed  Google Scholar 

  28. Belanger, K.G., Mirzayan, C., Kreuzer, H.E., Alberts, B.M. and Kreuzer, K.N. (1996) Two-dimensional gel analysis of rolling circle replication in the presence and absence of bacteriophage T4 primase. Nucleic Acids Res, 24, 2166–75.

    Article  CAS  PubMed  Google Scholar 

  29. Yasukawa, T., Yang, M.Y., Jacobs, H.T. and Holt, I.J. (2005) A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell, 18, 651–62.

    Article  CAS  PubMed  Google Scholar 

  30. Grossman, L.I., Watson, R. and Vinograd, J. (1973) The presence of ribonucleotides in mature closed-circular mitochondrial DNA. Proc Natl Acad Sci USA, 70, 3339–43.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, M.Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H.T. and Holt, I.J. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell, 111, 495–505.

    Article  CAS  PubMed  Google Scholar 

  32. Nawotka, K.A. and Huberman, J.A. (1988) Two-dimensional gel electrophoretic method for mapping DNA replicons. Mol Cell Biol, 8, 1408–13.

    CAS  PubMed  Google Scholar 

  33. Vergani, L., Rossi, R., Brierley, C.H., Hanna, M. and Holt, I.J. (1999) Introduction of heteroplasmic mitochondrial DNA (mtDNA) from a patient with NARP into two human rho degrees cell lines is associated either with selection and maintenance of NARP mutant mtDNA or failure to maintain mtDNA. Hum Mol Genet, 8, 1751–5.

    Article  CAS  PubMed  Google Scholar 

  34. He, J., Mao, C.C., Reyes, A., Sembongi, H., Di Re, M., Granycome, C., Clippingdale, A.B., Fearnley, I.M., Harbour, M., Robinson, A.J. et al. (2007) The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol, 176, 141–6.

    Article  CAS  PubMed  Google Scholar 

  35. Reyes, A.Y., Yasukawa, T. Holt, I.J. (2007) Analysis of Replicating Mitochondrial DNA. Methods in Molecular Biology: Mitochondria Practical Protocols 372, 219–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reyes, A., Yasukawa, T., Cluett, T.J., Holt, I.J. (2009). Analysis of Mitochondrial DNA by Two-Dimensional Agarose Gel Electrophoresis. In: Stuart, J.A. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 554. Humana Press. https://doi.org/10.1007/978-1-59745-521-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-521-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-60-2

  • Online ISBN: 978-1-59745-521-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics