Skip to main content

Integrating Genetic, Functional Genomic, and Bioinformatics Data in a Systems Biology Approach to Complex Diseases: Application to Schizophrenia

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 401))

Summary

The search for DNA alterations that cause human disease has been an area of active research for more than 50 years, since the time that the genetic code was first solved. In the absence of data implicating chromosomal aberrations, researchers historically have performed whole genome linkage analysis or candidate gene association analysis to develop hypotheses about the genes that most likely cause a specific phenotype or disease. Whereas whole genome linkage analysis examines all chromosomal locations without a priori predictions regarding what genes underlie susceptibility, candidate gene association studies require a researcher to know in advance the genes that he or she wishes to test (based on their knowledge of a disease). To date, very few whole genome linkage studies and candidate gene studies have produced results that lead to generalizable findings about common diseases. One factor contributing to this lack of results has certainly been the previously limited resolution of the techniques. Recent technological advances, however, have made it possible to perform highly informative whole genome linkage and association analyses, as well as whole genome transcription (transcriptome) analysis. In addition, for the first time we can detect structural DNA aberrations throughout the genome on a fine scale. Each of these four approaches has its own strengths and weaknesses, but taken together, the results from an integrated analysis can implicate highly promising novel candidate genes. Here, we provide an overview of the integrated methodology that we have used to combine high-throughput genetic and functional genomic data with bioinformatics data that have produced new insights into the potential biological basis for schizophrenia. We believe that the potential of this combined approach is greater than that of a single mode of discovery, particularly for complex genetic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Faraone, S.V., Glatt, S.J., and Taylor, L. (2004) The genetic basis of schizophrenia, in Early Clinical Intervention and Prevention in Schizophrenia, M.T. Tsuang, Editor. Humana Press: Totowa, New Jersey, pp. 3–25.

    Google Scholar 

  2. Kendler, K.S., Gruenberg, A.M., and Kinney, D.K. (1994) Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry 51(6):456–68.

    CAS  PubMed  Google Scholar 

  3. Faraone, S.V., and Tsuang, M.T. (1985) Quantitative models of the genetic transmission of schizophrenia. Psychol Bull 98:41–66.

    Article  CAS  PubMed  Google Scholar 

  4. Gottesman, I.I., and Moldin, S.O. (1997) Schizophrenia genetics at the millennium: cautious optimism. Clin Genet 52(5):404–7.

    Article  CAS  PubMed  Google Scholar 

  5. Risch, N. (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46(2):222–8.

    CAS  PubMed  Google Scholar 

  6. Lewis, C.M., Levinson, D.F., Wise, L.H., et al. (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73(1):34–48.

    Article  CAS  PubMed  Google Scholar 

  7. Singleton, A.B., Farrer, M., Johnson, J., et al. (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  8. Pulver, A.E., Nestadt, G., Goldberg, R., et al. (1994) Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 182(8):476–8.

    Article  CAS  PubMed  Google Scholar 

  9. Middleton, F.A., Trauzzi, M.G., Shrimpton, A.E., et al. (2006) Complete maternal uniparental isodisomy of chromosome 4 in a subject with major depressive disorder detected by high density SNP genotyping arrays. Am J Med Genet B Neuropsychiatr Genet 141(1):28–32.

    Google Scholar 

  10. Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A., and Levitt, P. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  11. Mirnics, K., Middleton, F.A., Lewis, D.A., and Levitt, P. (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24(8):479–86.

    Article  CAS  PubMed  Google Scholar 

  12. Hakak, Y., Walker, J.R., Li, C., et al. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–51.

    Article  CAS  PubMed  Google Scholar 

  13. Bahn, S., Augood, S.J., Ryan, M., Standaert, D.G., Starkey, M., and Emson, P.C. (2001) Gene expression profiling in the post-mortem human brain – no cause for dismay. J Chem Neuroanat 22(1–2):79–94.

    Article  CAS  PubMed  Google Scholar 

  14. Vawter, M.P., Crook, J.M., Hyde, T.M., et al. (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 58(1):11–20.

    Article  PubMed  Google Scholar 

  15. Middleton, F.A., Mirnics, K., Pierri, J.N., Lewis, D.A., and Levitt, P. (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22(7):2718–29.

    CAS  PubMed  Google Scholar 

  16. Middleton, F.A., Peng, L., Lewis, D.A., Levitt, P., and Mirnics, K. (2005) Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 30(5):974–83.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuang, M.T., Nossova, N., Yager, T., et al. (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 133(1):1–5.

    Google Scholar 

  18. Middleton, F.A., Pato, C.N., Gentile, K.L., et al. (2005) Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 136(1):12–25.

    Google Scholar 

  19. Pato, C.N., Azevedo, M.H., Pato, M.T., et al. (1997) Selection of homogeneous populations for genetic study: the Portugal genetics of psychosis project. Am J Med Genet 74(3):286–8.

    Article  CAS  PubMed  Google Scholar 

  20. Middleton, F.A., Pato, M.T., Gentile, K.L., et al. (2004) Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 74(5):886–97.

    Article  CAS  PubMed  Google Scholar 

  21. John, S., Shephard, N., Liu, G., et al. (2004) Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet 75(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  22. Schaid, D.J., Guenther, J.C., Christensen, G.B., et al. (2004) Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. Am J Hum Genet 75(6):948–65.

    Article  CAS  PubMed  Google Scholar 

  23. Evans, D.M., and Cardon, L.R. (2004) Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 75(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  24. Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R. (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  25. Petryshen, T.L., Middleton, F.A., Kirby, A., et al. (2005) Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 10(4):328, 366–74.

    Article  Google Scholar 

  26. Petryshen, T.L., Middleton, F.A., Tahl, A.R., et al. (2005) Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 10(12):1057, 1074–88.

    Article  CAS  Google Scholar 

  27. Dracheva, S., Elhakem, S.L., McGurk, S.R., Davis, K.L., and Haroutunian, V. (2004) GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 76(4):581–92.

    Article  CAS  PubMed  Google Scholar 

  28. Heldt, S.A., Green, A., and Ressler, K.J. (2004) Prepulse inhibition deficits in GAD65 knockout mice and the effect of antipsychotic treatment. Neuropsychopharmacology 29(9):1610–9.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis, D.A., Hashimoto, T., and Volk, D.W. (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Middleton, F., Rosenow, C., Vailaya, A., Kuchinsky, A., Pato, M., Pato, C. (2007). Integrating Genetic, Functional Genomic, and Bioinformatics Data in a Systems Biology Approach to Complex Diseases: Application to Schizophrenia. In: Neuroinformatics. Methods in Molecular Biology™, vol 401. Humana Press. https://doi.org/10.1007/978-1-59745-520-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-520-6_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-720-4

  • Online ISBN: 978-1-59745-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics