Skip to main content

Statistical Thermodynamics Through Computer Simulation to Characterize Phospholipid Interactions in Membranes

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

This chapter describes the major issues thDepartment of Physiat are involved in the statistical thermodynamics of phospholipid membranes at the atomic level. The ingredients going into models of lipid bilayers are summarized: force fields, representation of long-range interactions, and boundary conditions. Next, the choice of thermodynamic ensembles, and the two main options for the generation of a representative sample of configurations: molecular dynamics and Monte Carlo are discussed. The final issue that is dealt with describes the various ways the generated ensembles can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996) Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 118, 11,225–11,236.

    Article  CAS  Google Scholar 

  2. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization and dynamics calculation. J. Comp. Chem. 4, 187–217, URL:http://www.charmm.org. April 1, 2007.

    Article  CAS  Google Scholar 

  3. AMBER: Assisted model building with energy refinement, URL:http://www.amber.ucsf.edu/amber/amber.htm. April 1, 2007.

  4. Gasteiger, J. and Marsali, M. (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36, 3219–3229.

    Article  CAS  Google Scholar 

  5. GROMACS: The world’s fastest molecular dynamics, URL:http://www.gromacs.org/. April 1, 2007.

  6. Goetz, R. and Lipowsky, R. (1998) Computer simulation of bilayer membranes: Self-assembly and interfacial tension. J. Chem. Phys. 108, 7397–7409.

    Article  CAS  Google Scholar 

  7. Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S., and Klein, M. L. (2001) A Coarse Grain Model for Phospholipid Simulations. J. Phys. Chem. B 105, 4464–4470.

    Article  CAS  Google Scholar 

  8. MartÍ, J. (2004) A molecular dynamics transition path sampling study of model lipid bilayer membranes in aqueous environment. J. Phys. Condens. Matter. 16, 5669–5678.

    Article  Google Scholar 

  9. Marrink, S. J., de Vries, A. H., and Mark, A. E. (2004) Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 108, 750–760.

    Article  CAS  Google Scholar 

  10. Jedlovszky, P. and Mezei, M. (1999) Grand canonical ensemble Monte Carlo simulation of a lipid bilayer using extension biased rotations. J. Chem. Phys. 111, 10,770–10,773.

    Article  CAS  Google Scholar 

  11. Dolan, E. A., Venable, R. M., Pastor, R. W., and Brooks, B. R. (2002) Simulations of membranes and other interfacial systems using P21 and Pc periodic boundary conditions. Biophys. J. 82, 2317–2325.

    Article  PubMed  CAS  Google Scholar 

  12. Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., and Schulten, K. (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol. 15, 423–431.

    Article  PubMed  CAS  Google Scholar 

  13. Neumann, M. (1985) The dielectric constant of water. Computer simulations with the MCY potential. J. Chem. Phys. 82, 5663–5672.

    Article  CAS  Google Scholar 

  14. Ewald, P. (1924) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287.

    Google Scholar 

  15. Campbell, E. S. (1963) Existence of a “well defined” specific energy for an ionic crystal; justification of Ewald’s formulae and their use to deduce equations for multipole lattices. J. Phys. Chem. Solids. 24, 197–208.

    Article  CAS  Google Scholar 

  16. Essman, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.

    Article  Google Scholar 

  17. Yeh, I. C. and Berkowitz, M. L. (1999) Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162.

    Article  CAS  Google Scholar 

  18. Chiu, S. W., Clark, M., Balaji, V., Subramaniam, S., Scott, H. L., and Jakobsson, E. (1995) Incorporation of Surface Tension into Molecular Dynamics Simulation of an Interface. A Fluid Phase Lipid Bilayer Membrane. Biophys. J. 69, 1230–1245.

    Article  PubMed  CAS  Google Scholar 

  19. Tieleman, D. P. and Berendsen, H. J. C. (1996) Molecular dynamics simulation of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys. 103, 4871–4880.

    Article  Google Scholar 

  20. Mezei, M. (1980) A cavity-biased (T,V,μ) Monte Carlo method for the computer simulation of fluids. Mol. Phys. 40, 901–906.

    Article  CAS  Google Scholar 

  21. Mezei, M. (1987) Grand-canonical ensemble Monte Carlo simulation of dense fluids: Lennard-Jones, soft spheres and water. Mol. Phys. 61, 565–582. Erratum (1989) 67, 1207–1208.

    Article  CAS  Google Scholar 

  22. Mezei, M. (2002) On the potential of Monte Carlo methods for simulating macromolecular assemblies, in Third International Workshop for Methods for Macromolecular Modeling Conference Proceedings, (Gan, H. H. and Schlick, T., eds.), Springer, New York, pp. 177–196.

    Google Scholar 

  23. Chiu, S. W., Jakobsson, E., and Scott, H. L. (2001) Combined Monte Carlo and Molecular Dynamics Simulation of Hydrated Lipid-Cholesterol Lipid Bilayers at Low Cholesterol Concentration. Biophys. J. 80, 1104–1114.

    Article  PubMed  CAS  Google Scholar 

  24. Chiu, S. W., Jakobsson, E., and Scott, H. L. (2001) Combined Monte Carlo and molecular dynamics simulation of hydrated dipalmitoyl-phosphatidylcholine-cholesterol lipid bilayers. J. Chem. Phys. 114, 5435–5443.

    Article  CAS  Google Scholar 

  25. Ebersole, B. J., Visiers, I., Weinstein, H., and Sealfon, S. C. (2003) Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5-HT2A receptor determines relative efficacy. Mol. Pharm. 63, 36–43.

    Article  CAS  Google Scholar 

  26. Allen, M. P. and Tildesley, D. J. (1986) Computer simulation of liquids. Clarendon Press, Oxford.

    Google Scholar 

  27. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical integration of cartesian equation of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327–341.

    Article  CAS  Google Scholar 

  28. Metropolis, N. A., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) Equation of state calculation by fast computing machines. J. Chem. Phys. 21, 1087–1092.

    Article  CAS  Google Scholar 

  29. Rosenbluth, M. N. and Rosenbluth, A. W. (1955) Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23, 356–359.

    Article  CAS  Google Scholar 

  30. Siepman, I. and Frenkel, D. (1992) Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Mol. Phys. 75, 59–70.

    Article  Google Scholar 

  31. Dodd, L. R., Boone, T. D., and Theodorou, D. N. (1993) A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses. Mol. Phys. 78, 961–996.

    Article  CAS  Google Scholar 

  32. Mezei, M. (2003) Efficient Monte Carlo sampling for long molecular chains using local moves, tested on a solvated lipid bilayer. J. Chem. Phys. 118, 3874–3879.

    Article  CAS  Google Scholar 

  33. Noguti, T. and Go, N. (1985) Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins. Biopolymers 24, 527–546.

    Article  PubMed  CAS  Google Scholar 

  34. Marrink, S. J., Tieleman, D. P., and Mark, A. E. (2000) Molecular Dynamics Simulations of the Kinetics of Spontaneous Micelle Formation. J. Phys. Chem. B 104, 12,165–12,173.

    Article  CAS  Google Scholar 

  35. URL:http://thallium.bsd.uchicago.edu/Roux Lab/; April 1, 2007.

  36. De Loof, H. D., Harvey, S. C., Segrest, J. P., and Pastor, R. W. (1991) Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. Biochemistry 30, 2099–2113.

    Article  PubMed  Google Scholar 

  37. Pastor, R. W., Venable, R. M., and Karplus, M. (1991) Model for the structure of the lipid bilayer. Proc. Natl. Acad. Sci. USA 88, 892–896.

    Article  PubMed  CAS  Google Scholar 

  38. Smondyrev, A. M. and Berkowitz, M. L. (1999) Structure of Dipalmitoylphosphatidylcholine/ Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation. Biophys. J. 77, 2075–2089.

    Article  PubMed  CAS  Google Scholar 

  39. Jedlovszky, P. and Mezei, M. (2003) Effect of Cholesterol on the Properties of Phospholipid Membranes. 1. Structural Features. J. Phys. Chem. B 107, 5311–5321.

    Article  CAS  Google Scholar 

  40. Marrink, S. J. and Berendsen, H. J. C. (1994) Simulation of Water Transport through a Lipid Membrane. J. Phys. Chem. 98, 4155–4168.

    Article  CAS  Google Scholar 

  41. Rabinovich, A. L., Balabaev, N. K., Alinchenko, M. G., Voloshin, V. P., Medvedev, N. N., and Jedlovszky, P. (2005) Computer simulation study of intermolecular voids in unsaturated phosphatidylcholine lipid bilayers. J. Chem. Phys. 122, 084906. 12 pages.

    Google Scholar 

  42. Hyvönen, M. T., Rantala, T. T., and Ala-Korpela, M. (1997) Structure and Dynamic Properties of Diunsaturated 1-Palmitoyl-2-Linoleoyl-sn-Glycero-3-Phosphatidylcholine Lipid Bilayer from Molecular Dynamics Simulation. Biophys. J. 73, 2907–2923.

    Article  PubMed  Google Scholar 

  43. Heller, H., Schaefer, M., and Schulten, K. (1993) Molecular Dynamics Simulation of a Bilayer of 200 Lipids in the Gel and Liquid-Crystal Phases. J. Phys. Chem. 97, 8343–8360.

    Article  CAS  Google Scholar 

  44. Tu, K., Tobias, D. J., and Klein, M. L. (1995) Constant Pressure and Temperature Molecular Dynamics Simulation of a Fully Hydrated Liquid Crystal Phase Dipalmitoylphosphatidylcholine Bilayer. Biophys. J. 69, 2558–2562.

    Article  PubMed  CAS  Google Scholar 

  45. Tu, K., Klein, M. L., and Tobias, D. J. (1998) Constant-Pressure Molecular Dynamics Investigation of Cholesterol Effects in a Dipalmitoylphosphatidylcholine Bilayer. Biophys. J. 75, 2147–2156.

    Article  PubMed  CAS  Google Scholar 

  46. Zubrzycki, I. Z., Xu, Y., Madrid, M., and Tang, P. (2000) Molecular dynamics simulation of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J. Chem. Phys. 112, 3437–3441.

    Article  CAS  Google Scholar 

  47. Saiz, L. and Klein, M. L. (2001) Structural Properties of a Highly Polyunsaturated Lipid Bilayer from Molecular Dynamics Simulations. Biophys. J. 81, 204–216.

    Article  PubMed  CAS  Google Scholar 

  48. Husslein, T., Newns, D. M., Pattnaik, P. C., Zhong, Q., Moore, P. B., and Klein, M. L. (1998) Constant pressure and temperature molecular-dynamics simulation of the hydrated diphytanolphosphatidylcholine lipid bilayer. J. Chem. Phys. 109, 2826–2832.

    Article  CAS  Google Scholar 

  49. Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., and Kusumi, A. (1999) Charge Pairing of Headgroups in Phosphatidylcholine Membranes: A Molecular Dynamics Simulation Study. Biophys. J. 76, 1228–1240.

    Article  PubMed  CAS  Google Scholar 

  50. Saiz, L. and Klein, M. L. (2002) Electrostatic interactions in neutral model phospholipid bilayer by molecular dynamics simulations. J. Chem. Phys. 116, 3052–3057.

    Article  CAS  Google Scholar 

  51. Åman, K., Lindahl, E., Edholm, O., Håkansson, P., and Westlund, P. O. (2003) Structure and Dynamics of Interfacial Water in an L α Phase Lipid Bilayer from Molecular Dynamics Simulations. Biophys. J. 84, 102–115.

    Article  PubMed  Google Scholar 

  52. Rabinovich, A. L., Ripatti, P. O., Balabaev, N. K., and Leermakers, F. A. M. (2003) Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modelling. Phys. Rev. E 67, 011909. 14 pages.

    Google Scholar 

  53. Snyder, R. G., Tu, K., Klein, M. L., Mendelssohn, R., Strauss, H. L., and Sun, W. (2002) Acyl Chain Conformation and Packing in Dipalmitoylphosphatidylcholine Bilayers from MD Simulation and IR Spectroscopy. J. Phys. Chem. B. 106, 6273–6288.

    Article  CAS  Google Scholar 

  54. Hofsäß, C., Lindahl, E., and Edholm, O. (2003) Molecular Dynamics Simulations of Phospholipid Bilayers with Cholesterol. Biophys. J. 84, 2192–2206.

    Article  PubMed  Google Scholar 

  55. Shinoda, W., Mikami, M., Baba, T., and Hato M. (2003) Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability. J. Phys. Chem. B 107, 14,030–14,035.

    Article  CAS  Google Scholar 

  56. López-Cascales, J. J., GarcÍa de la Torre, J., Marrink, S. J., and Berendsen, H. J. C. (1996) Molecular dynamics simulations of a charged biological membrane. J. Chem. Phys. 104, 2713–2720.

    Article  Google Scholar 

  57. van der Ploeg, P. and Berendsen, H. J. C. (1982) Molecular dynamics simulation of a bilayer membrane. J. Chem. Phys. 76, 3271–3276.

    Article  Google Scholar 

  58. Jedlovszky, P. and Mezei, M. (2001) Orientational Order of the Water Molecules Across a Fully Hydrated DMPC Bilayer. A Monte Carlo Simulation Study. J. Phys. Chem. B 105, 3614–3623.

    Article  CAS  Google Scholar 

  59. Pandit, S. A., Bostick, D., and Berkowitz, M. L. (2003) An algorithm to describe molecular scale rugged surfaces and its application to the study of a water/lipid bilayer interface. J. Chem. Phys. 119, 2199–2205.

    Article  CAS  Google Scholar 

  60. Gawrisch, K., Ruston, D., Zimmemberg, J., Parsegian, V. A., Rand, R. P., and Fuller, N. (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 61, 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  61. Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., and Kusumi, A. (1997) Hydrogen Bonding of Water to Phosphatidylcholine in the Membrane As Studied by a Molecular Dynamics Simulation: Location, Geometry, and Lipid-Lipid Bridging via Hydrogen-Bonded Water. J. Phys. Chem. A 101, 3677–3691.

    Article  CAS  Google Scholar 

  62. Pasenkiewicz-Gierula, M., Róg, T., Kitamura, K., and Kusumi, A. (2000) Cholesterol Effects on the Phosphatidylcholine Bilayer Polar Region: A Molecular Simulation Study. Biophys. J. 78, 1517–1521.

    Google Scholar 

  63. Chiu, S. W., Jakobsson, E., Mashl, R. J., and Scott, H. L. (2002) Cholesterol-Induced Modifications in Lipid Bilayers: A Simulation Study. Biophys. J. 83, 1842–1853.

    Article  PubMed  CAS  Google Scholar 

  64. Shinoda, K., Shinoda, W., Baba, T., and Mikami, M. (2004) Comparative molecular dynamics study of ether-and esther-linked phospholipid bilayers. J. Chem. Phys. 121, 9648–9654.

    Article  PubMed  CAS  Google Scholar 

  65. Jedlovszky, P., Medvedev, N. N., and Mezei, M. (2004) Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure. J. Phys. Chem. B 108, 465–472.

    Article  CAS  Google Scholar 

  66. Jedlovszky, P., Pártay, L., and Mezei, M. (2007) The structure of the zwitterionic headgroups in a DMPC bilayer as seen from Monte Carlo simulation: Comparisons with ionic solutions. J. Mol. Liquids, 131–132, 225–234.

    Article  Google Scholar 

  67. Shinoda, W. and Okazaki, S. (1998) A Voronoi analysis of lipid area fluctuation in a bilayer. J. Chem. Phys. 109, 2199–2205.

    Article  Google Scholar 

  68. Falck, E., Patra, M., Karttunen, M., Hyvönen, M. T., and Vattulainen, I. (2004) Lessons of Slicing Membranes: Interplay of Packing, Free Area, and Lateral Diffusion in Phospholipid/Cholesterol Bilayers. Biophys. J. 87, 1076–1091.

    Article  PubMed  CAS  Google Scholar 

  69. Jedlovszky, P., Vincze, á., and Horvai, G. (2002) New insight into the orientational order of water molecules at the water/1,2-dichloroethane interface: a Monte Carlo simulation study. J. Chem. Phys. 117, 2271–2280.

    Article  CAS  Google Scholar 

  70. Jedlovszky, P., Vincze, á., and Horvai, G. (2004) Full description of the orientational statistics of molecules near interfaces. Water at the interface with CCl4. Phys. Chem. Chem. Phys. 6, 1874–1879.

    Article  CAS  Google Scholar 

  71. Cantor, R. S. (1999) Lipid Composition and the Lateral Pressure Profile in Bilayers. Biophys. J. 76, 2625–2639.

    Article  PubMed  CAS  Google Scholar 

  72. Marrink, S. J., Sok, R. M., and Berendsen, H. J. C. (1996). Free volume properties of a simulated lipid membrane, J. Chem. Phys. 104, 9090–9099.

    Article  CAS  Google Scholar 

  73. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley, Chichester.

    Google Scholar 

  74. Jedlovszky, P. and Mezei, M. (2000) Calculation of the Free Energy Profile of H2O, O2, CO, CO2, NO, and CHCl3 in a Lipid Bilayer with a Cavity Insertion Variant of the Widom Method. J. Am. Chem. Soc. 122, 5125–5131.

    Article  CAS  Google Scholar 

  75. Jedlovszky, P. and Mezei, M. (2003) Effect of Cholesterol on the Properties of Phospholipid Membranes. 2. Free Energy Profile of Small Molecules. J. Phys. Chem. B 107, 5322–5332.

    Article  CAS  Google Scholar 

  76. Falck, E., Patra, M., Karttunen, M., Hyvönen, M. T., and Vattulainen, I. (2004) Impact of cholesterol on voids in phospholipid membranes. J. Chem. Phys. 121, 12,676–12,689.

    Article  PubMed  CAS  Google Scholar 

  77. Alinchenko, M. G., Anikeenko, A. V., Medvedev, N. N., Voloshin, V. P., Mezei, M., and Jedlovszky, P. (2004) Morphology of Voids in Molecular Systems. A Voronoi-Delaunay Analysis of a Simulated DMPC Membrane. J. Phys. Chem. B 108, 19,056–19,067.

    Article  CAS  Google Scholar 

  78. Alinchenko, M. G., Voloshin, V. P., Medvedev, N. N., Mezei, M., Pártay, L., and Jedlovszky, P. (2005) Effect of Cholesterol on the Properties of Phospholipid Membranes. 4. Interatomic Voids. J. Phys. Chem. B 109, 16,490–16,502.

    Article  PubMed  CAS  Google Scholar 

  79. Bassolino-Klimas, D., Alper, H. E., and Stouch, T. R. (1995) Mechanism of Solute Diffusion through Lipid Bilayer Membranes by Molecular Dynamics Simulation. J. Am. Chem. Soc. 117, 4118–4129.

    Article  CAS  Google Scholar 

  80. López-Cascales, J. J., Hernández Cifre, J. G., and GarcÍa de la Torre, J. (1998) Anaesthetic Mechanism on a Model Biological Membrane: A Molecular Dynamics Simulations Study. J. Phys. Chem. B 102, 625–631.

    Article  Google Scholar 

  81. Söderhäll, J. A. and Laaksonen, A. (2001) Molecular Dynamics Simulation of Ubiquinone inside a Lipid Bilayer. J. Phys. Chem. B 105, 9308–9315.

    Article  Google Scholar 

  82. Duong, T. H., Mehler, E. L., and Weinstein, H. (1999) Molecular Dynamics Simulation of Membranes and a Transmembrane Helix. J. Comp. Phys. 151, 358–387.

    Article  CAS  Google Scholar 

  83. Bandyopadhyay, S., Tarek, M., and Klein, M. L. (1999) Molecular Dynamics Study of a Lipid-DNA Complex, J. Phys. Chem. B 103, 10,075–10,080.

    Article  CAS  Google Scholar 

  84. Pandit, S. A., Vasudevan, S., Chiu, S. W., Mashl, R. J., Jakobsson, E., and Scott, H. L. (2004) Sphingomyelin-Cholesterol Domains in Phospholipid Membranes: Atomistic Simulation. Biophys. J. 87, 1092–1100.

    Article  PubMed  CAS  Google Scholar 

  85. Marrink, S. J. and Berendsen, H. J. C. (1996) Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations. J. Phys. Chem. 100, 16,729–16,738.

    Article  CAS  Google Scholar 

  86. Shinoda, W., Mikami, M., Baba, T., and Hato, M. (2004) Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: 2. Permeability. J. Phys. Chem. B 108, 9346–9356.

    Article  CAS  Google Scholar 

  87. Widom, B. (1963) Some Topics in the Theory of Fluids. J. Chem. Phys. 39, 2808–2812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Mezei, M., Jedlovszky, P. (2007). Statistical Thermodynamics Through Computer Simulation to Characterize Phospholipid Interactions in Membranes. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics