Skip to main content

Fluorescence Microscopy to Study Domains in Supported Lipid Bilayers

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Fluorescence microscopy of model membranes is a powerful tool for identifying the nature and extent of coexisting phases in biologically relevant lipid mixtures. Planar supported bilayers offer the advantage over spherical model membranes in that both overall composition and lipid asymmetry can be controlled. In addition, the membrane can be easily accessed by perfusion of soluble components. Here, the necessary techniques for reconstituting bilayers of complex composition and phase behavior in planar systems are outlined. Effective methods for the formation of both symmetric and asymmetric bilayers are described. Considerations that must be taken into account in choosing suitable lipid compositions, effective fluorescent lipid dyes, and adequate microscope setups are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  2. Simson, R., Sheets, E. D., and Jacobson, K. (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993.

    Article  PubMed  CAS  Google Scholar 

  3. Sheets, E. D., Lee, G. M., Simson, R., and Jacobson, K. (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36, 12,449–12,458.

    Article  PubMed  CAS  Google Scholar 

  4. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., and Jacobson, K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.

    Article  PubMed  CAS  Google Scholar 

  5. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., et al. (2001) Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  6. Feigenson, G. W. and Buboltz, J. T. (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788.

    Article  PubMed  CAS  Google Scholar 

  7. Veatch, S. L. and Keller, S. L. (2002) Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101.

    Article  PubMed  Google Scholar 

  8. Baumgart, T., Hess, S. T., and Webb, W. W. (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824.

    Article  PubMed  CAS  Google Scholar 

  9. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., and Schwille, P. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28,109–28,115.

    Article  PubMed  CAS  Google Scholar 

  10. Bretscher, M. (1972) Asymmetrical lipid bilayer structure of biological membranes. Nat. New Biol. 61, 11–12.

    Google Scholar 

  11. Devaux, P. F. (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30, 1163–1173.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, D. A. and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.

    Article  PubMed  CAS  Google Scholar 

  13. Quinn, P. J. (2002) Plasma membrane phospholipid asymmetry. Subcel. Biochem. 36, 39–60.

    Article  CAS  Google Scholar 

  14. Rodgers, W., Crise, B., and Rose, J. K. (1994) Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell Biol. 14, 5384–5391.

    PubMed  CAS  Google Scholar 

  15. Baird, B., Sheets, E. D., and Holowka, D. (1999) How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys. Chem. 82, 109–119.

    Article  PubMed  CAS  Google Scholar 

  16. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  17. Crane, J. M., Kiessling, V., and Tamm, L. K. (2005) Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. Langmuir 21, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  18. Crane, J. M. and Tamm, L. K. (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979.

    Article  PubMed  CAS  Google Scholar 

  19. Tamm, L. K. and McConnell, H. M. (1985) Supported phospholipid bilayers. Biophys. J. 47, 105–113.

    Article  PubMed  CAS  Google Scholar 

  20. Kalb, E., Frey, S., and Tamm, L. K. (1992) Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta 1103, 307–316.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson, T. E., Sankaram, M. B., Biltonen, R. L., Marsh, D., and Vaz, W. L. (1995) Effects of domain structure on in-plane reactions and interactions. Mol. Membr. Biol. 12, 157–162.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, J., Buboltz, J. T., and Feigenson, G. W. (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1417, 89–100.

    Article  PubMed  CAS  Google Scholar 

  23. Kiessling, V., Crane,, J. M., and Tamm, L. K. (2006) Transbilayer effects of raft-like lipid domains in asymmetric planer bilayers measured by single molecule tracking. Biophys. J. 91, 3313–3326.

    Article  PubMed  CAS  Google Scholar 

  24. Wagner, M. L. and Tamm, L. K. (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 79, 1400–1414.

    Article  PubMed  CAS  Google Scholar 

  25. Kiessling, V. and Tamm, L. K. (2003) Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys. J. 84, 408–418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Crane, J.M., Tamm, L.K. (2007). Fluorescence Microscopy to Study Domains in Supported Lipid Bilayers. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics