Skip to main content

Micropipet Aspiration for Measuring Elastic Properties of Lipid Bilayers

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Micropipet aspiration of giant unilamellar vesicles can be used to determine the mechanical properties of area compressibility modulus, bending modulus, and lysis tension of lipid bilayers. In this technique, giant (∼25-µm diameter) single bilayered vesicles are aspirated into a pipet of inner diameter ≈8 µm. The changes in projection length of each vesicle inside of the pipet in response to changes in aspiration (suction) pressure are used to determine mechanical moduli. The suction pressure of vesicle rupture (lysis) is used to determine the membrane tension of lysis (lysis tension). Micropipet aspiration of giant unilamellar vesicles is highly specialized, requiring custom laboratory fabrication of most components (e.g., micropipets, chambers, and manometer). Herein, methods for fabrication of each of these components and instructions for measurements are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gennis, R. B. (1989) Biomembranes: Molecular Structure and Function. Springer-Verlag, New York.

    Google Scholar 

  2. Israelachvili, J. N. (1992) Intermolecular and Surface Forces. Academic Press London, London.

    Google Scholar 

  3. Rutkowski, C. A., Williams, L. M., Haines, T. H., and Cummins, H. Z. (1991) The Elasticity of Synthetic Phospholipid Vesicles Obtained By Photon Correlation Spectroscopy. Biochemistry 30, 5688–5696.

    Article  PubMed  CAS  Google Scholar 

  4. Hallett, F., Marsh, J., Nickel, B., and Wood, J. (1993) Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys. J. 64, 435–442.

    Article  PubMed  CAS  Google Scholar 

  5. Koenig, B., Strey, H., and Gawrisch, K. (1997) Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys. J. 73, 1954–1966.

    Article  PubMed  CAS  Google Scholar 

  6. Waugh, R. E., Narla, M., Jackson, C. W., Mueller, T. J., Suzuki, T., and Dale, G. L. (1992) Rheologic Properties of Senescent Erythrocytes-Loss of Surface-Area and Volume with Red-Blood-Cell Age. Blood 79, 1351–1358.

    PubMed  CAS  Google Scholar 

  7. Sit, P., Spector, A., Lue, A., Popel, A., and Brownell, W. (1997) Micropipette aspiration on the outer hair cell lateral wall. Biophys. J. 72, 2812–2819.

    Article  PubMed  CAS  Google Scholar 

  8. Kwok, R. and Evans, E. (1981) Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35, 637–652.

    Article  PubMed  CAS  Google Scholar 

  9. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., and Evans, E. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  PubMed  CAS  Google Scholar 

  10. Needham, D. and Nunn, R. (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997–1009.

    Article  PubMed  CAS  Google Scholar 

  11. Tierney, K. J., Block, D. E., and Longo, M. L. (2005) Elasticity and phase behavior of DPPC membranes modulated by cholesterol, ergosterol, and ethanol. Biophys. J. 89, 2481–2493.

    Article  PubMed  CAS  Google Scholar 

  12. Discher, B. M., Won, Y. Y., Ege, D. S., et al. (1999) Polymersomes: Tough vesicles made from diblock copolymers. Science 284, 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  13. Longo, M. L., Waring, A. J., and Hammer, D. A. (1997) Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: Area expansion and permeation. Biophys. J. 73, 1430–1439.

    Article  PubMed  CAS  Google Scholar 

  14. Longo, M. L., Waring, A. J., Gordon, L. M., and Hammer, D. A. (1998) Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir 14, 2385–2395.

    Article  CAS  Google Scholar 

  15. Ly, H. V. and Longo, M. L. (2004) The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys. J. 87, 1013–1033.

    Article  PubMed  CAS  Google Scholar 

  16. Needham, D. and Zhelev, D. V. (1995) Lysolipid Exchange With Lipid Vesicle Membranes. Annu. Biomed. Eng. 23, 287–298.

    Article  CAS  Google Scholar 

  17. Olbrich, K., Rawicz, W., Needham, D., and Evans, E. (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J. 79, 321–327.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S., Kim, D. H., and Needham, D. (2001) Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at water-air interface. Langmuir 17, 5544–5550.

    Article  CAS  Google Scholar 

  19. Lee, J. C. M., Bermudez, H., Discher, B. M., et al. (2001) Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng. 73, 135–145.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, S., Kim, D. H., and Needham, D. (2001) Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 1. A new method for determination of interfacial tension. Langmuir 17, 5537–5543.

    Article  CAS  Google Scholar 

  21. Evans, E. and Rawicz, W. (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 2094–2097.

    Article  PubMed  CAS  Google Scholar 

  22. Evans, E. and Ludwig, F. (2000) Dynamic strengths of molecular anchoring and material cohesion in fluid biomembranes. J. Phys. Condensed Matter 12, A315–A320.

    Article  CAS  Google Scholar 

  23. Evans, E., Heinrich, V., Ludwig, F., and Rawicz, W. (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350.

    Article  PubMed  CAS  Google Scholar 

  24. Evans, E. and Needham, D. (1987) Physical-Properties of Surfactant Bilayer-Membranes—Thermal Transitions, Elasticity, Rigidity, Cohesion, and Colloidal Interactions. J. Phys. Chem. 91, 4219–4228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Longo, M.L., Ly, H.V. (2007). Micropipet Aspiration for Measuring Elastic Properties of Lipid Bilayers. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics