Skip to main content

Membrane Lipid Polymorphism

Relationship to Bilayer Properties and Protein Function

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Bilayers are the most familiar arrangement of phospholipids. However, even as bilayers, phospholipids can arrange themselves in a variety of morphologies from essentially flat structures found in large liposomes or when adhered to a flat solid support, to the curved structures found in small liposomes or as bicontinuous cubic phases. Phospholipids can also arrange themselves as curved monolayers, such as in the hexagonal phase, and they can even form spherical or ellipsoid-shaped micelles. A number of factors will determine the final morphology of a lipid aggregate including the structure of the lipid, the nature of the lipid headgroup and its degree of hydration, and the temperature. In addition to being interesting in its own right, the property of lipid polymorphism can be applied to understand how fundamental intrinsic curvature properties of a membrane alter the physical properties of a membrane bilayer. This, in turn, will affect the functional characteristics of membrane proteins, with several possible mechanisms explaining the coupling of membrane properties with protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouritsen, O. G. (2005) Life as a matter of fat: The emerging science of lipidomics. Springer, Berlin.

    Google Scholar 

  2. Fahy, E., Subramaniam, S., Brown, H. A., et al. (2005) A comprehensive classification system for lipids. J. Lipid. Res. 46, 839–861.

    Article  PubMed  CAS  Google Scholar 

  3. Murphy, R. C., Fiedler, J., and Hevko, J. (2001) Analysis of nonvolatile lipids by mass spectrometry. Chem. Rev. 101, 479–526.

    Article  PubMed  CAS  Google Scholar 

  4. King, I. B., Kristal, A. R., Schaffer, S., Thornquist, M., and Goodman, G. E. (2005) Serum trans-fatty acids are associated with risk of prostate cancer in beta-Carotene and Retinol Efficacy Trial. Cancer Epidemiol. Biomarkers Prev. 14, 988–992.

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Garcia, E., Schulze, M. B., Meigs, J. B., et al. (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J. Nutr. 135, 562–566.

    PubMed  CAS  Google Scholar 

  6. Mozaffarian, D., Rimm, E. B., King, I. B., Lawler, R. L., McDonald, G. B., and Levy, W. C. (2004) trans fatty acids and systemic inflammation in heart failure. Am. J. Clin. Nutr. 80, 1521–1525.

    PubMed  CAS  Google Scholar 

  7. Roach, C., Feller, S. E., Ward, J. A., Shaikh, S. R., Zerouga, M., and Stillwell, W. (2004) Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43, 6344–6351.

    Article  PubMed  CAS  Google Scholar 

  8. Stender, S. and Dyerberg, J. (2004) Influence of trans fatty acids on health. Ann. Nutr. Metab. 48, 61–66.

    Article  PubMed  CAS  Google Scholar 

  9. Lim, G. P., Calon, F., Morihara, T., et al. (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25, 3032–3040.

    Article  PubMed  CAS  Google Scholar 

  10. Peet, M. and Stokes, C. (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65, 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  11. Seo, T., Blaner, W. S., and Deckelbaum, R. J. (2005) Omega-3 fatty acids: molecular approaches to optimal biological outcomes. Curr. Opin. Lipidol. 16, 11–18.

    Article  PubMed  CAS  Google Scholar 

  12. Wu, M., Harvey, K. A., Ruzmetov, N., et al. (2005) Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J. Cancer 117, 340–348.

    Article  PubMed  CAS  Google Scholar 

  13. Epand, R. M. (1998) Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta 1376, 353–368.

    PubMed  CAS  Google Scholar 

  14. de Kruijff, B. (1997) Lipid polymorphism and biomembrane function. Curr. Opin. Chem. Biol. 1, 564–569.

    Article  PubMed  Google Scholar 

  15. Hyde, S., Andersson, S., Larsson, et al. (1997) The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology. Elsevier, Amsterdam.

    Google Scholar 

  16. Landh, T. (1995) From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett. 369, 13–17.

    Article  PubMed  CAS  Google Scholar 

  17. Lindblom, G. and Rilfors, L. (1992) Nonlamellar phases formed by membrane lipids. Adv. Colloid Interface Sci. 41, 101–125.

    Article  PubMed  CAS  Google Scholar 

  18. Luzzati, V. (1997) Biological significance of lipid polymorphism: the cubic phases. Curr. Opin. Struct. Biol. 7, 661–668.

    Article  PubMed  CAS  Google Scholar 

  19. Cullis, P. R. and de Kruijff, B. (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399–420.

    PubMed  CAS  Google Scholar 

  20. Gruner, S. M. (1992) Nonlamellar Lipid Phases, (Yeagle, P., ed.), Boca Raton, FL, pp. 211–250.

    Google Scholar 

  21. Epand, R. M., Epand, R. F., Decicco, A., and Schwarz, D. (2000) Curvature properties of novel forms of phosphatidylcholine with branched acyl chains. Eur. J. Biochem. 267, 2909–2915.

    Article  PubMed  CAS  Google Scholar 

  22. Rand, R. P. and Sengupta, S. (1972) Cardiolipin forms hexagonal structures with divalent cations. Biochim. Biophys. Acta 255, 484–492.

    Article  PubMed  CAS  Google Scholar 

  23. Epand, R. M. and Bryszewska, M. (1988) Modulation of the bilayer to hexagonal phase transition and solvation of phosphatidylethanolamines in aqueous salt solutions. Biochemistry 27, 8776–8779.

    Article  PubMed  CAS  Google Scholar 

  24. Kozlov, M. M., Leikin, S., and Rand, R. P. (1994) Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine. Biophys. J. 67, 1603–1611.

    Article  PubMed  CAS  Google Scholar 

  25. Jordanova, A., Lalchev, Z., and Tenchov, B. (2003) Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases. Eur. Biophys. J. 31, 626–632.

    PubMed  CAS  Google Scholar 

  26. Siegel, D. P. (1999) The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys. J. 76, 291–313.

    Article  PubMed  CAS  Google Scholar 

  27. Deng, Y., Marko, M., Buttle, K. F., Leith, A., Mieczkowski, M., and Mannella, C. A. (1999) Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J. Struct. Biol. 127, 231–239.

    Article  PubMed  CAS  Google Scholar 

  28. Rand, R. P. and Parsegian, V. A. (1997) Hydration, curvature, and bending elasticity of phospholipids monolayers, (Epand, R. M., ed.), San Diego, CA, pp. 167–189.

    Google Scholar 

  29. Siegel, D. P. and Kozlov, M. M. (2004) The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374.

    Article  PubMed  CAS  Google Scholar 

  30. Cantor, R. S. (1999) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 101, 45–56.

    Article  PubMed  CAS  Google Scholar 

  31. Cantor, R. S. (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76, 2625–2639.

    Article  PubMed  CAS  Google Scholar 

  32. Cantor, R. S. (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36, 2339–2344.

    Article  PubMed  CAS  Google Scholar 

  33. Cantor, R. S. (2001) Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys. J. 80, 2284–2297.

    Article  PubMed  CAS  Google Scholar 

  34. Mohr, J. T., Gribble, G. W., Lin, S. S., Eckenhoff, R. G., and Cantor, R. S. (2005) Anesthetic potency of two novel synthetic polyhydric alkanols longer than the n-alkanol cutoff: evidence for a bilayer-mediated mechanism of anesthesia? J. Med. Chem. 48, 4172–4176.

    Article  PubMed  CAS  Google Scholar 

  35. May, S., Kozlovsky, Y., Ben Shaul, A., and Kozlov, M. M. (2004) Tilt modulus of a lipid monolayer. Eur. Phys. J. E. Soft Matter 14, 299–308.

    Article  PubMed  CAS  Google Scholar 

  36. Ding, L., Weiss, T. M., Fragneto, G., Liu, W., Yang, L., and Huang, H. W. (2005) Distorted hexagonal phase studied by neutron diffraction: lipid components demixed in a bent monolayer. Langmuir 21, 203–210.

    Article  PubMed  CAS  Google Scholar 

  37. Garab, G., Lohner, K., Laggner, P., and Farkas, T. (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 5, 489–494.

    Article  PubMed  CAS  Google Scholar 

  38. Morein, S., Andersson, A., Rilfors, L., and Lindblom, G. (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J. Biol. Chem. 271, 6801–6809.

    Article  PubMed  CAS  Google Scholar 

  39. Osterberg, F., Rilfors, L., Wieslander, A., Lindblom, G., and Gruner, S. M. (1995) Lipid extracts from membranes of Acholeplasma laidlawii A grown with different fatty acids have a nearly constant spontaneous curvature. Biochim. Biophys. Acta 1257, 18–24.

    PubMed  CAS  Google Scholar 

  40. Vikstrom, S., Li, L., and Wieslander, A. (2000) The nonbilayer/bilayer lipid balance in membranes. Regulatory enzyme in Acholeplasma laidlawii is stimulated by metabolic phosphates, activator phospholipids, and double-stranded DNA. J. Biol. Chem. 275, 9296–9302.

    Article  PubMed  CAS  Google Scholar 

  41. Chernomordik, L. V. and Kozlov, M. M. (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123, 375–382.

    Article  PubMed  CAS  Google Scholar 

  42. Zimmerberg, J. and Chernomordik, L. V. (1999) Membrane fusion. Adv. Drug Deliv. Rev. 38, 197–205.

    Article  PubMed  CAS  Google Scholar 

  43. Epand, R. M. and Epand, R. F. (2003) Fusion peptides and the mechanism of viral fusion. Biochim. Biophys. Acta 1614, 116–121.

    Article  PubMed  CAS  Google Scholar 

  44. Haque, M. E., Koppaka, V., Axelsen, P. H., and Lentz, B. R. (2005) Properties and Structures of the Influenza and HIV Fusion Peptides on Lipid Membranes: Implications for a Role in Fusion. Biophys. J. 89, 3183–3194.

    Article  PubMed  CAS  Google Scholar 

  45. Cherezov, V., Siegel, D. P., Shaw, W., Burgess, S. W., and Caffrey, M. (2003) The kinetics of nonlamellar phase formation in DOPE-Me: Relevance to biomembrane fusion. J. Membr. Biol. 195, 165–182.

    Article  PubMed  CAS  Google Scholar 

  46. Siegel, D. P. and Epand, R. M. (2000) Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochim. Biophys. Acta 1468, 87–98.

    Article  PubMed  CAS  Google Scholar 

  47. Yang, L. and Huang, H. W. (2003) A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys. J. 84, 1808–1817.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, M. F. (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159–180.

    Article  PubMed  CAS  Google Scholar 

  49. Escriba, P. V., Ozaita, A., Ribas, C., et al. (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc. Natl. Acad. Sci. USA 94, 11,375–11,380.

    Article  PubMed  CAS  Google Scholar 

  50. Vogler, O., Casas, J., Capo, D., et al. (2004) The Gbetagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures. J. Biol. Chem. 279, 36,540–36,545.

    Article  PubMed  Google Scholar 

  51. Yang, Q., Alemany, R., Casas, J., Kitajka, K., Lanier, S. M., and Escriba, P. V. (2005) Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Mol. Pharmacol. 68, 210–217.

    PubMed  CAS  Google Scholar 

  52. Epand, R. F., Martinou, J. C., Fornallaz-Mulhauser, M., Hughes, D. W., and Epand, R. M. (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32,632–32,639.

    Article  PubMed  CAS  Google Scholar 

  53. Basa?ez, G., Sharpe, J. C., Galanis, J., Brandt, T. B., Hardwick, J. M., and Zimmerberg, J. (2002) Bax-type apoptotic proteins poraPe pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277, 49,360–49,365.

    Article  Google Scholar 

  54. Zhang, W., Bogdanov, M., Pi, J., Pittard, A. J., and Dowhan, W. (2003) Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition. J. Biol. Chem. 278, 50,128–50,135.

    Article  PubMed  CAS  Google Scholar 

  55. Hong, H. and Tamm, L. K. (2004) Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc. Natl. Acad. Sci. USA 101, 4065–4070.

    Article  PubMed  CAS  Google Scholar 

  56. Epand, R. M. and Lester, D. S. (1990) The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharmacol. Sci. 11, 317–320.

    Article  PubMed  CAS  Google Scholar 

  57. Attard, G. S., Templer, R. H., Smith, W. S., Hunt, A. N., and Jackowski, S. (2000) Modulation of CTP: phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad Sci. USA 97, 9032–9036.

    Article  PubMed  CAS  Google Scholar 

  58. Mosior, M. and Epand, R. M. (1999) Role of the membrane in the modulation of the activity of protein kinase C. J. Liposome Res. 9, 21–41.

    Article  CAS  Google Scholar 

  59. Epand, R. M., Fuller, N., and Rand, R. P. (1996) Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophys. J. 71, 1806–1810.

    Article  PubMed  CAS  Google Scholar 

  60. Giorgione, J. R., Kraayenhof, R., and Epand, R. M. (1998) Interfacial membrane properties modulate protein kinase C activation: role of the position of acyl chain unsaturation. Biochemistry 37, 10,956–10,960.

    Article  PubMed  CAS  Google Scholar 

  61. Davies, S. M., Epand, R. M., Kraayenhof, R., and Cornell, R. B. (2001) Regulation of CTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry 40, 10,522–10,531.

    Article  PubMed  CAS  Google Scholar 

  62. Drobnies, A. E., Davies, S. M., Kraayenhof, R., Epand, R. F., Epand, R. M., and Cornell, R. B. (2002) CTP: phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. Biochim. Biophys. Acta 1564, 82–90.

    Article  PubMed  CAS  Google Scholar 

  63. Giorgione, J. R., Huang, Z., and Epand, R. M. (1998) Increased activation of protein kinase C with cubic phase lipid compared with liposomes. Biochem. 37, 2384–2392.

    Article  CAS  Google Scholar 

  64. Keller, S. L., Gruner, S. M., and Gawrisch, K. (1996) Small concentrations of alamethicin induce a cubic phase in bulk phosphatidylethanolamine mixtures. Biochim. Biophys. Acta 1278, 241–246.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Epand, R.M. (2007). Membrane Lipid Polymorphism. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics