Skip to main content

Single-Molecule Fluorescence Microscopy to Determine Phospholipid Lateral Diffusion

  • Protocol
Book cover Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

The single-molecule detection (SMD) of individual fluorophores represents a powerful experimental technique that allows for the observation of individual membrane molecules in their different dynamic states without having to average over a large number of molecules. Spatial resolution in ensemble-averaging techniques such as fluorescence recovery after photobleaching, is limited by the diffraction limit of light (∼250 nm). In contrast, SMD (as well as single-molecule tracking of gold-labeled biomolecules through Nanovid microscopy) provides a tracking accuracy of approx 10–30 nm (dependent on experimental conditions). This level of accuracy makes single-molecule tracking techniques much better suited to detect nanometer-size heterogeneous structures in membranes. SMD can be easily applied to model and cellular membranes using a variety of fluorescent labels including organic dyes, quantum dots, and dye/quantum dots-doped nanoparticles.

The main focus of this chapter is to outline the SMD methodology to study lateral diffusion of lipids in model membranes. Subheading 1. provides an overview about the development of single-molecule tracking techniques, and explains the basic concept of single-molecule tracking. Subheading 2. lists all relevant chemicals necessary to successfully conduct lipid lateral diffusion studies on model membranes. Subheading 3. describes a typical experimental setup for SMD using wide-field illumination; thus, this setup can be utilized to track single-lipid tracers in solid-supported phospholipid bilayers and phospholipid monolayers at the air-water interface. Furthermore, some general considerations are included about different fluorescent labels for lipid-tracking studies. In addition a description of sample preparation procedures for the design of solid-supported phospholipid bilayers and Langmuir monolayers of phospholipids are described. Finally, Subheading 4. lists additional relevant information helpful for conducting SMD experiments on lipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxton, M. J. (1999) Lateral diffusion of lipids and proteins. Curr. Top. Membr. 48, 229–282.

    Article  CAS  Google Scholar 

  2. Sheetz, M. P. (1995) Cellular plasma membrane domains. Mol. Membr. Biol. 12, 89–91.

    Article  PubMed  CAS  Google Scholar 

  3. Edidin, M. (1997) Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528–532.

    Article  PubMed  CAS  Google Scholar 

  4. Edidin, M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 11, 492–496.

    Article  PubMed  CAS  Google Scholar 

  5. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  6. Sako, Y. and Kusumi, A. (1994) Compartmentalized structure of the plasma membrane for receptor movements as revealed by nanometer-level motion analysis. J. Cell Biol. 125, 1251–1264.

    Article  PubMed  CAS  Google Scholar 

  7. Sako, Y. and Kusumi, A. (1995) Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574.

    Article  PubMed  CAS  Google Scholar 

  8. Saxton, M. J. and Jacobson, K. (1997) Single particle tracking: Applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.

    Article  PubMed  CAS  Google Scholar 

  9. Moerner, M. E. and Kador, L. (1989) Optical-detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538.

    Article  PubMed  CAS  Google Scholar 

  10. Orrit, M. and Bernard, J. (1990) Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719.

    Article  PubMed  CAS  Google Scholar 

  11. Betzig., E. and Chichester, R. J. (1993) Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425.

    Article  PubMed  CAS  Google Scholar 

  12. Ambrose, W. P., Goodwin, P. M., Martin, J. C., and Keller, R. A. (1994) Single-molecule detection and photochemistry of a surface using near-field optical excitation. Phys. Rev. Lett. 72, 160–163.

    Article  PubMed  CAS  Google Scholar 

  13. Ambrose, W. P., Goodwin, P. M., Martin, J. C., and Keller, R. A. (1994) Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265, 364–367.

    Article  PubMed  CAS  Google Scholar 

  14. Xie, X. S. and Dunn, R. C. (1994) Probing single-molecule dynamics. Science 265, 361–364.

    Article  PubMed  CAS  Google Scholar 

  15. Trautmann, J. K., Macklin, J. J., Brus, L. E., and Betzig, E. (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369, 40–42.

    Article  Google Scholar 

  16. Nie, S., Chiu, D. T., and Zare, R. N. (1994) Probing individual molecules with confocal fluorescence microscopy Science 266, 1018–1021.

    Article  PubMed  CAS  Google Scholar 

  17. Macklin, J. J., Trautmann, J. K., Harris, T. D., and Brus, L. E. (1994) Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258.

    Article  Google Scholar 

  18. Ha, T., Enderle, T., Chemla, D. S., Selvin, P. R., and Weiss, S. (1996) Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982.

    Article  PubMed  CAS  Google Scholar 

  19. Lu, H. P. and Xie, X. S. (1997) Single-molecule spectral fluctuations at room temperature. Nature 385, 143–146.

    Article  CAS  Google Scholar 

  20. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., and Yanagida, T. (1995) Imaging of single fluorescent molecules and andividual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt, Th., Schuetz, G. J., Baumgartner, W., Gruber, H. J., and Schindler, H. (1995) Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J. Phys. Chem. 99, 17,662–17,668.

    Article  CAS  Google Scholar 

  22. Guettler, F., Irngartinger, T., Plakhotnik, T., Renn, A., and Wild, U. P. (1994) Fluorescence microscopy of single molecules. Chem. Phys. Lett. 217, 393–397.

    Article  CAS  Google Scholar 

  23. Sase, I., Miyata, H., Corrie, J. E. T., Craik, J. S., and Kinosita, K. (1995) Real-time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J. 69, 323–328.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt, Th., Schuetz, G. J., Baumgartner, W., Gruber, H. J., and Schindler, H. (1996) Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93, 2926–2929.

    Article  PubMed  CAS  Google Scholar 

  25. Dickson, R. M., Cubitt, A. B., Tsien, R. Y., and Moerner, W. E. (1996) 3-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274, 966–969.

    Article  PubMed  CAS  Google Scholar 

  26. Dickson, R. M., Cubitt, A. B., Tsien, R. Y., and Moerner, W. E. (1997) On/off blinking and switching behavior of single molecules of green fluorescent proteins. Nature 388, 355–358.

    Article  PubMed  CAS  Google Scholar 

  27. Xu, X. H. and Yeung, E. S. (1997) Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science 275, 1106–1109.

    Article  PubMed  CAS  Google Scholar 

  28. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A. H., and Yanagida, T. (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal-reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, G. M., Ishihara, A., and Jacobson, K. (1991) Direct Brownian motion of lipids in a membrane. Proc. Natl. Acad. Sci. 88, 6274–6278.

    Article  PubMed  CAS  Google Scholar 

  30. Sonnleitner, A., Schuetz, G. J., and Schmidt, Th. (1999) Free Brownian motion of individual lipid molecules in biomembranes. Biophys. J. 77, 2638–2642.

    Article  PubMed  CAS  Google Scholar 

  31. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  32. Ke, P. C. and Naumann, C. A. (2001) Single molecule fluorescence imaging of phospholipids monolayers at the air-water interface. Langmuir 17, 3727–3733.

    Article  CAS  Google Scholar 

  33. Ke, P. C. and Naumann, C. A. (2001) Hindered diffusion in polymer-tethered phospholipids monolayers at the air-water interface: A single molecule fluorescence imaging study. Langmuir 17, 5076–5081.

    Article  CAS  Google Scholar 

  34. Deverall, M. A., Gindl, E., Sinner, E.-K., et al. (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys. J. 88, 1875–1886.

    Article  PubMed  CAS  Google Scholar 

  35. Qian, H., Sheetz, M. P., and Elson, E. L. (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921.

    Article  PubMed  CAS  Google Scholar 

  36. Schuetz, G. J., Schindler, H., and Schmidt, Th. (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080.

    Article  Google Scholar 

  37. Bobroff, N. (1986) Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157.

    Article  Google Scholar 

  38. Harms, G. S., Sonnleitner, M., Schuetz, G. J., Gruber, H. J., and Schmidt, Th. (1999) Single-molecule anisotropy imaging. Biophys. J. 77, 2864–2870.

    Article  PubMed  CAS  Google Scholar 

  39. Murcia, M. J., Minner, D. E., Ritchie, K., Naumann, C. Design of Monovalently-Labeled Quantum Dot-Conjugated Lipids for High-Speed Tracking Experiments on Cell Surfaces (Submitted).

    Google Scholar 

  40. Murcia, M. J. and Naumann, C. A. (2005) Biofunctionalization of fluorescent nanoparticles, in Biofunctionalization of Nanomaterials, (Kumar, C., ed.) Wiley-VCH Weinheim, Germany pp. 1–40.

    Google Scholar 

  41. Tamm, L. K. and McConnell, H. M. (1985) Supported phospholipid bilayers. Biophys. J. 47, 105–113.

    Article  PubMed  CAS  Google Scholar 

  42. Kalb, E., Frey, S., and Tamm, L. K. (1992) Formation of supported planar bilayers by fusion of vesicles. Biophys. J. 47, 105–113.

    Google Scholar 

  43. Kalb, E., Frey, S., and Tamm, L. K. (1992) Formation of supported planar bilayers by vesicle fusion to supported monolayers. Biochim. Biophys. Acta 1103, 763–765.

    Google Scholar 

  44. Cremer, P. S. and Boxer, S. G. (1999) Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 103, 2554–2559.

    Article  CAS  Google Scholar 

  45. Wagner, M. L. and Tamm, L. K. (2000) Tethered polymer-supported planar bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 79, 1400–1414.

    Article  PubMed  CAS  Google Scholar 

  46. Naumann, C. A., Prucker, O., Lehmann, T., Ruehe, J., Knoll, W., and Frank, C. W. (2002) The polymer-supported phospholipid bilayer: tetherering as a new approach toward substrate-membrane stabilization. Biomacromolecules 3, 667–678.

    Article  Google Scholar 

  47. Traeuble, H. and Sackmann, E. (1972) Studies of the crystalline-liquid phase transition of lipid model membranes, III. Structure of a steroid-lecithin system below and above the lipid phase transition. J. Am. Chem. Soc. 94, 4499–4510.

    Article  Google Scholar 

  48. Galla, H. J., Hartmann, W., Theilen, U., and Sackmann, E. (1979) On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J. Membr. Biol. 48, 215–236.

    Article  PubMed  CAS  Google Scholar 

  49. Anderson, C. M., Georgiou, G. N., Morrison, I. E., Stevenson, G. V., and Cherry, R. J. (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenca virus receptor mobility at 4°C. J. Cell Sci. 101, 415–425.

    PubMed  Google Scholar 

  50. Crocker, J. C., Valentine, M. T., Weeks, E. R., et al. (2000) Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85, 888–891.

    Article  PubMed  CAS  Google Scholar 

  51. Valentine, M. T., Kaplan, P. D., Thota, D., et al. (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64, 061,506–061,515.

    Article  CAS  Google Scholar 

  52. Shin, J. H., Gardel, M. L., Mahadevan, L., Matsudaira, P., and Weitz, D. A. (2000) Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proc. Natl. Acad. Sci. USA 101, 9636–9641.

    Article  Google Scholar 

  53. Axelrod, D. (1989) Total internal-reflection fluorescence microscopy. Methods Cell Biol. 30, 245–270.

    Article  PubMed  CAS  Google Scholar 

  54. Ambrose, W. P., Goodwin, P. M., and Nolan, J. P. (1999) Single molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries. Cytometry 36, 224–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Murcia, M.J., Garg, S., Naumann, C.A. (2007). Single-Molecule Fluorescence Microscopy to Determine Phospholipid Lateral Diffusion. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics