Skip to main content

Optical Dynamometry to Study Phase Transitions in Lipid Membranes

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

The fluidity of the lipid matrix of cell membranes is crucial for the mobility of various inclusions like proteins. When the lipid bilayer undergoes phase transition from fluid-to-gel phase, the shear surface viscosity of the membrane diverges, thus hindering the motion of the membrane inclusions. On the other hand, the membrane bending stiffness drops down, and below the main phase transition, drastically increases with lowering the temperature. A tool to study the membrane properties when the lipid bilayer crosses the phase transition is provided by optical trapping and manipulation of microspheres attached to the membrane. Giant unilamellar vesicles are used, which allow for direct visualization of the membrane response, as model membranes. Following the motion of one or two particles attached to a vesicle, the microscope can provide evidence for the membrane elasticity and state of fluidity. As forces acting on the spheres, one can use gravity, thermal noise, or radiation pressure force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A. (1970) Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159.

    Article  CAS  Google Scholar 

  2. Angelova, M. I. and Pouligny, B. (1993) Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. I. Experimental. Pure Appl. Opt. A 2, 261–276.

    Article  CAS  Google Scholar 

  3. Dietrich, C., Angelova, M. I., and Pouligny, B. (1997) Adhesion of latex spheres to giant phospholipid vesicles: statics and dynamics. J. Phys. II France 7, 1651–1682.

    Article  CAS  Google Scholar 

  4. Dimova, R., Dietrich, C. and Pouligny, B. Motion of particles attached to giant vesicles: falling ball viscosimetry and elasticity measurements on lipid membranes, in Giant Vesicles, ed. Luisi, P. L., and Walde, P. (1999) John Wiley and Sons, New York, pp. 221–230.

    Google Scholar 

  5. Danov, K. D., Dimova, R., and Pouligny, B. (2000) Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12, 2711–2722.

    Article  CAS  Google Scholar 

  6. Dimova, R., Danov, K., Pouligny, B., and Ivanov, I. B. (2000) Lateral motion of a large solid particle trapped in a thin liquid film. J. Coll. Interface Sci. 226, 35–43.

    Article  CAS  Google Scholar 

  7. Dimova, R., Dietrich, C., Hadjiisky, A., Danov K., and Pouligny, B. (1999) Falling ball viscosimetry of giant vesicle membranes: finite-size effects. Eur. Phys. J. B 12, 589–598.

    Article  CAS  Google Scholar 

  8. Seifert, U. and Lipowsky, R. (1995) Morphology of vesicles. in Structure and Dynamics of Membranes, (Lipowsky, R. and Sackmann, E., eds.), Elsevier, Amsterdam, pp. 403–463.

    Chapter  Google Scholar 

  9. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., and Evans, E. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  PubMed  CAS  Google Scholar 

  10. Dimova, R., Pouligny, B., and Dietrich, C. (2000) Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study. Biophys. J. 79, 340–356.

    Article  PubMed  CAS  Google Scholar 

  11. Mecke, K. R., Charitat, T., and Graner, F. (2003) Fluctuating lipid bilayer in an arbitrary potential: theory and experimental determination of bending rigidity. Langmuir 19, 2080–2087.

    Article  CAS  Google Scholar 

  12. Méléard, P., Gerbaud, C., Pott, T., et al. (1997) Bending elasticities of model membranes—influences of temperature and sterol content. Biophys. J. 72, 2616–2629.

    Article  PubMed  Google Scholar 

  13. Evans, E. and Rawicz, W. (1990) Entropy-driven tension and bending elasticity in condensedfluid membranes. Phys. Rev. Lett. 17, 2094–2097.

    Article  Google Scholar 

  14. Kummrow, M. and Helfrich, W. (1991) Deformation of giant lipid vesicles by electric fields. Phys. Rev. A 44, 8356–8360.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, C.-H., Lin, W.-C., and Wang, J. (2001) All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions. Phys. Rev. E 64, 020901.

    Article  CAS  Google Scholar 

  16. Koynova, R. and Caffrey, M. (1998) Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta 1376, 91–145.

    PubMed  CAS  Google Scholar 

  17. Angelova, M. I. and Dimitrov, D. S. (1986) Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311.

    Article  CAS  Google Scholar 

  18. Angelova, M. I., Soléau, S., Méléard, P., Faucon, J. F., and Bothorel, P. (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Colloid Polym. 89, 127–131.

    Article  CAS  Google Scholar 

  19. Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K. A. and Lipowsky, R. (2006) A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter 18, S1151–S1176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Dimova, R., Pouligny, B. (2007). Optical Dynamometry to Study Phase Transitions in Lipid Membranes. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics