Skip to main content

Fluorometric Assay for Detection of Sterol Oxidation in Liposomal Membranes

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

The authors have developed a fluorescence assay to measure the rate and extent of sterol oxidation in lipid bilayers. Dehydroergosterol (DHE), a fluorescent cholesterol analog, is used as a probe and at the same time as a membrane component. The assay can also be performed on bilayers containing a mixture of sterols including DHE and nonfluorescent sterols, such as cholesterol and ergosterol. The fluorescence intensity of DHE decreases on oxidation, so the rate and extent of free radical- or enzyme-induced sterol oxidation can be measured as a function of temperature and membrane composition. For the studies, two-component (e.g., phosphatidylcholine (PC)/DHE) and multicomponent (e.g., DHE/PC/bovine-brain sphingomyelin) large unilamellar vesicles were used, and sterol oxidation was initiated either by the peroxy radical generator 2,2′-azobis (2-amidinopropane) dihydrochloride or by the enzyme cholesterol oxidase. The data gathered from this assay may be used to examine the effects of water- and lipid-soluble antioxidants on membrane sterol oxidation produced by free radicals. This assay can be used to test the potency of antioxidants and pro-oxidants, and can be used to determine whether unknown substances demonstrate antioxidant activity against sterol oxidation. The assay can also be used as a tool to examine the effect of sterol lateral organization on sterol oxidation (in the presence or absence of antioxidants). In agreement with the sterol regular distribution model, it is found that both free radical- and enzyme-induced sterol oxidation vary with membrane sterol content in a well defined alternating manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aviram, M. (2000) Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic. Res. 33(Suppl), S85–S97.

    PubMed  CAS  Google Scholar 

  2. Panini, S. R. and Sinensky, M. S. (2001) Mechanisms of oxysterol-induced apoptosis. Curr. Opin. Lipidol. 12, 529–533.

    Article  PubMed  CAS  Google Scholar 

  3. Peng, S., Hu, B., and Morin, R. J. (1992) Effects of cholesterol oxides on atherogenesis, in Biological effects of cholesterol oxides, p. 167–189 (Peng, S. and Morin, R. J., eds.), CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Chang, J. Y., Phelan, K. D., and Liu, L. Z. (1998) Neurotoxicity of 25-OH-cholesterol on NGF-differentiated PC12 cells. Neurochem. Res. 23, 7–16.

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg, D. (1991) Antioxidants and atherosclerosis. A current assessment. Circulation 84, 1420–1425.

    PubMed  CAS  Google Scholar 

  6. Bjorkhem, I. (2002) Do oxysterols control cholesterol homeostasis? J. Clin. Invest. 110, 725–730.

    PubMed  CAS  Google Scholar 

  7. Park, P. S. W. and Addis, P. B. (1992) Methods of analysis of cholesterol oxides, in Biological effects of cholesterol oxides, p. 33–70 (Peng, S. and Morin, R. J., eds.), CRC Press, Boca Raton, FL.

    Google Scholar 

  8. Smith, A. G. and Brooks, C. J. (1977) The substrate specificity and stereochemistry, reversibility and inhibition of the 3-oxo steroid delta 4-delta 5-isomerase component of cholesterol oxidase. Biochem. J. 167, 121–129.

    PubMed  CAS  Google Scholar 

  9. Park, P. S. W. and Addis, P. B. (1985) HPLC determination of C-7 oxidized cholesterol derivatives in foods. J. Food Sci. 50, 1437–1441.

    Article  CAS  Google Scholar 

  10. Wang, M. M., Olsher, M., Sugar, I. P., and Chong, P. L.-G. (2004) Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes. Biochemistry 43, 2159–2166.

    Article  PubMed  CAS  Google Scholar 

  11. Chong, P. L.-G. (1994) Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 91, 10,069–10,073.

    Article  PubMed  CAS  Google Scholar 

  12. Virtanen, J. A., Ruonala, M., Vauhkonen, M., and Somerharju, P. (1995) Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry 34, 11,568–11,581.

    Article  PubMed  CAS  Google Scholar 

  13. Chong, P. L.-G. and Olsher, M. (2004) Fluorescence studies of the existence and functional importance of regular distributions in liposomal membranes. Soft Mater. 2, 85–108.

    Article  CAS  Google Scholar 

  14. Chong, P. L.-G. and Sugar, I. P. (2002) Fluorescence studies of lipid regular distribution in membranes. Chem. Phys. Lipids 116, 153–175.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, M. M., Sugar, I. P., and Chong, P. L.-G. (1998) Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes. Biochemistry 37, 11,797–11,805.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, F. and Chong, P. L.-G. (1999) Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Biochemistry 38, 3867–3873.

    Article  PubMed  CAS  Google Scholar 

  17. Olsher, M., Yoon, S. I., and Chong, P. L.-G. (2005) Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes. Biochemistry 44, 2080–2087.

    Article  PubMed  CAS  Google Scholar 

  18. Muczynski, K. A. and Stahl, W. L. (1983) Incorporation of danyslated phospholipids and dehydroergosterol into membranes using a phospholipid exchange protein. Biochemistry 22, 6037–6048.

    Article  PubMed  CAS  Google Scholar 

  19. Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  20. MacLachlan, J., Wotherspoon, A. T., Ansell, R. O., and Brooks, C. J. (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72, 169–195.

    Article  PubMed  CAS  Google Scholar 

  21. Moore, N. F., Patzer, E. J., Barenholz, Y., and Wagner, R. R. (1977) Effect of phospholipase C and cholesterol oxidase on membrane integrity, microviscosity, and infectivity of vesicular stomatitis virus. Biochemistry 16, 4708–4715.

    Article  PubMed  CAS  Google Scholar 

  22. Bar, L. K., Chong, P. L.-G., Barenholz, Y., and Thompson, T. E. (1989) Spontaneous transfer between phospholipid bilayers of dehydroergosterol, a fluorescent cholesterol analog. Biochim. Biophys. Acta 983, 109–112.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, F., Sugar, I. P., and Chong, P. L.-G. (1997) Cholesterol and ergosterol superlattices in threecomponent liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence. Biophys. J. 72, 2243–2254.

    Article  PubMed  CAS  Google Scholar 

  24. Schroeder, F., Barenholz, Y., Gratton, E., and Thompson, T. E. (1987) A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26, 2441–2448.

    Article  PubMed  CAS  Google Scholar 

  25. Chong, P. L.-G., Liu, F., Wang, M. M., Truong, K., Sugar, I. P., and Brown, R. E. (1996) Fluorescence evidence for cholesterol regular distribution in phosphatidylcholine and in sphingomyelin lipid bilayers. J. Fluoresc. 6, 221–230.

    Article  CAS  Google Scholar 

  26. Krasowska, A., Rosiak, D., Szkapiak, K., Oswiecimska, M., Witek, S., and Lukaszewicz, M. (2001) The antioxidant activity of BHT and new phenolic compounds PYA and PPA measured by chemiluminescence. Cell Mol. Biol. Lett. 6, 71–81.

    PubMed  CAS  Google Scholar 

  27. Niki, E. (1990) Free radical initiators as source of water-or lipid-soluble peroxyl radicals. Methods Enzymol. 186, 100–108.

    Article  PubMed  CAS  Google Scholar 

  28. Chong, P. L.-G., Tang, D., and Sugar, I. P. (1994) Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Biophys. J. 66, 2029–2038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Chong, P.LG., Olsher, M. (2007). Fluorometric Assay for Detection of Sterol Oxidation in Liposomal Membranes. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics