Efficient Manipulation of Hedgehog/GLI Signaling Using Retroviral Expression Systems

  • Maria Kasper
  • Gerhard Regl
  • Thomas Eichberger
  • Anna-Maria Frischauf
  • Fritz Aberger
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)


Efficient manipulation of Hedgehog (HH)/GLI signaling activity is crucial to the analysis of molecular events underlying HH/GLI-regulated cell fate determination and tumor growth. In this article, we describe the use of retroviral expression systems as a valuable tool to activate or repress Hh-pathway activity in a broad spectrum of mammalian cells—including human cells—either by forced expression of the major Hedgehog-effectors GLI1 and GLI2 or by expression of the short-hairpin RNAs-targeting GLI mRNAs. We focus on two distinct retroviral systems that allow efficient and sustainable expression of GLI proteins in primary cells and cell lines of human origin: (i) a Moloney Murine Leukemia Virus-based and (ii) an HIV-derived lentivirus expression system, which allows transduction of both dividing and quiescent cells.

Key Words

Retroviral gene expression lentivirus Hedgehog signal transduction GLI proteins RNA interference 


  1. 1.
    Ruiz, I. A. A., Palma, V., and Dahmane, N. (2002) Hedgehog-Gli signalling and the growth of the brain. Nat. Rev. Neurosci. 3, 24–33.CrossRefGoogle Scholar
  2. 2.
    Ingham, P. W. and McMahon, A. P. (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087.CrossRefPubMedGoogle Scholar
  3. 3.
    McMahon, A. P., Ingham, P. W., and Tabin, C. J. (2003) Developmental roles and clinical significance of hedgehog signaling. Curr. Top Dev. Biol. 53, 1–114.CrossRefPubMedGoogle Scholar
  4. 4.
    Berman, D. M., Karhadkar, S. S., Hallahan, A. R., et al. (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561.CrossRefPubMedGoogle Scholar
  5. 5.
    Berman, D. M., Karhadkar, S. S., Maitra, A., et al. (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851.CrossRefPubMedGoogle Scholar
  6. 6.
    Karhadkar, S. S., Bova, G. S., Abdallah, N., et al. (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712.CrossRefPubMedGoogle Scholar
  7. 7.
    Watkins, D. N., Berman, D. M., Burkholder, S. G., Wang, B., Beachy, P. A. and Baylin, S. B. (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317.CrossRefPubMedGoogle Scholar
  8. 8.
    Romer, J. T., Kimura, H., Magdaleno, S., et al. (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1 (+/−)p53(−/−) mice. Cancer Cell 6, 229–240.CrossRefPubMedGoogle Scholar
  9. 9.
    Sanchez, P., Hernandez, A. M., Stecca, B., et al. (2004) Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Nat. Sci. Acad. USA 101, 12,561–12,566.CrossRefGoogle Scholar
  10. 10.
    Thayer, S. P., di Magliano, M. P., Heiser, P. W., et al. (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856.CrossRefPubMedGoogle Scholar
  11. 11.
    Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.CrossRefPubMedGoogle Scholar
  12. 12.
    Heemskerk, M. H., Blom, B., Nolan, G., et al. (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602.CrossRefPubMedGoogle Scholar
  13. 13.
    Wiznerowicz, M. and Trono, D. (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961.CrossRefPubMedGoogle Scholar
  14. 14.
    Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.CrossRefPubMedGoogle Scholar
  15. 15.
    Deng, H., Lin, Q., and Khavari, P. A. (1997) Sustainable cutaneous gene delivery. Nat. Biotechnol. 15, 1388–1391.CrossRefPubMedGoogle Scholar
  16. 16.
    Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.PubMedGoogle Scholar
  17. 17.
    Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875.CrossRefPubMedGoogle Scholar
  18. 18.
    Kinzler, K. W., Ruppert, J. M., Bigner, S. H., and Vogelstein, B. (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371–374.CrossRefPubMedGoogle Scholar
  19. 19.
    Tanimura, A., Dan, S., and Yoshida, M. (1998) Cloning of novel isoforms of the human Gli2 oncogene and their activities to enhance tax-dependent transcription of the human T-cell leukemia virus type 1 genome. J. Virol. 72, 3958–3964.PubMedGoogle Scholar
  20. 20.
    Regl, G., Neill, G. W., Eichberger, T., et al. (2002) Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal Cell Carcinoma. Oncogene 21, 5529–5539.CrossRefPubMedGoogle Scholar
  21. 21.
    Davis, H. E., Rosinski, M., Morgan, J. R., and Yarmush, M. L. (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys. J. 86, 1234–1242.CrossRefPubMedGoogle Scholar
  22. 22.
    Boukamp, P. Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Maria Kasper
    • 1
  • Gerhard Regl
    • 1
  • Thomas Eichberger
    • 1
  • Anna-Maria Frischauf
    • 1
  • Fritz Aberger
    • 1
  1. 1.Department of Molecular BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations