Advertisement

Manipulation of Hedgehog Signaling in Xenopus by Means of Embryo Microinjection and Application of Chemical Inhibitors

  • Thomas Hollemann
  • Emmanuel Tadjuidje
  • Katja Koebernick
  • Tomas Pieler
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)

Abstract

Xenopus embryos provide a powerful model system to investigate the complex molecular mechanisms, which are controlled by or control the activity of the Hedgehog (Hh) signaling pathway. The use of synthetic mRNA or antisense oligonucleotide (morpholino) microinjection into blastomeres of early embryos or by simply treating the embryos with small organic inhibitors, has already led to an idea of the network in which the Hh pathway is embedded. More needs to be done in order to achieve a detailed understanding of how the different players of the Hh signaling pathway are integrated to control different genetic programs, such as axis formation in early embryos or cell differentiation during retinogenesis.

Key Words

Patched smoothened Hedgehog-interacting protein (HIP) 7-dehydrocholesterol reductase (DHCR7) AY9944 mevinolin statin hydroxymethyl-glutaryl coenzyme A reductase (HMGR) 

References

  1. 1.
    Briscoe, J. and Ericson, J. (2001) Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Ingham, P. W. and McMahon, A. P. (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Develop. 15, 3059–3087.CrossRefPubMedGoogle Scholar
  3. 3.
    Jacob, J. and Briscoe, J. (2003) Gli proteins and the control of spinal-cord patterning. EMBO Reports 4, 761–765.CrossRefPubMedGoogle Scholar
  4. 4.
    Lum, L. and Beachy, P. A. (2004) The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759.CrossRefPubMedGoogle Scholar
  5. 5.
    Kalderon, D. (2005) Hedgehog signaling: an Arrestin connection? Curr. Biol. 15, 175–178.CrossRefGoogle Scholar
  6. 6.
    Ashe, H. L. and Briscoe, J. (2006) The interpretation of morphogen gradients. Development 133, 385–394.CrossRefPubMedGoogle Scholar
  7. 7.
    Ekker, S. C., McGrew, L. L., Lai, C. J., et al. (1995) Distinct expression and shared activities of members of the Hedgehog gene family of Xenopus laevis. Development 121, 2337–2347.PubMedGoogle Scholar
  8. 8.
    Cornesse, Y., Pieler, T., and Hollemann, T. (2005) Olfactory and lens placode formation is controlled by the Hedgehog-interacting protein (Xhip) in Xenopus. Dev Biol. 277, 296–315.CrossRefPubMedGoogle Scholar
  9. 9.
    Koebernick, K., Hollemann, T., and Pieler, T. (2003) A restrictive role for Hedgehog signaling during otic specification in Xenopus. Dev. Biol. 260, 325–338.CrossRefPubMedGoogle Scholar
  10. 10.
    Perron, M., Boy, S., Amato, M. A., et al. (2003) A novel function for Hedgehog signaling in retinal pigment epithelium differentiation. Development 130, 1565–1577.CrossRefPubMedGoogle Scholar
  11. 11.
    Tadjuidje, E. and Hollemann, T. (2006) Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development. Dev. Dyn. 235(8), 20.CrossRefGoogle Scholar
  12. 12.
    Hirose, G. and Jacobson, M. (1979) Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev. Biol. 71, 191–202.CrossRefPubMedGoogle Scholar
  13. 13.
    Jacobson, M. and Hirose, G. (1981) Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32-and 64-cell stages. J. Neurosci. 1, 271–284.PubMedGoogle Scholar
  14. 14.
    Dale, L. and Slack, J. M. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.PubMedGoogle Scholar
  15. 15.
    Chen, Y. and Struhl, G. (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563.CrossRefPubMedGoogle Scholar
  16. 16.
    Hynes, M., Ye, W., Wang, K., et al. (2000) The seven-transmembrane receptor Smoothened cell-autonomously induces multiple ventral cell types. Nat. Neurosci. 3, 41–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Xie, J., Murone, M., Luoh, S. M., et al. (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Briscoe, J., Chen, Y., Jessell, T. M., and Struhl, G. (2001) A Hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of Sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Thomas Hollemann
    • 1
  • Emmanuel Tadjuidje
    • 2
  • Katja Koebernick
    • 3
  • Tomas Pieler
    • 3
  1. 1.Institut für Physiologische Chemie, Hollystr. HalleGermany
  2. 2.Division of Developmental BiologyCCRFCincinnatiUSA
  3. 3.Zentrum Biochemie und Molekulare ZellbiologieGöttingenGermany

Personalised recommendations