GAL4/UAS Targeted Gene Expression for Studying Drosophila Hedgehog Signaling

  • Denise Busson
  • Anne-Marie Pret
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)


The GAL4/upstream activating sequence (UAS) system is one of the most powerful tools for targeted gene expression. It is based on the properties of the yeast GAL4 transcription factor which activates transcription of its target genes by binding to UAS cis-regulatory sites. In Drosophila, the two components are carried in separate lines allowing for numerous combinatorial possibilities. The driver lines provide tissue-specific GAL4 expression and the responder lines carry the coding sequence for the gene of interest under the control of UAS sites. In this chapter, the basic GAL4/UAS system and its extensions, namely those allowing precise temporal control and reversible expression, are described. In addition, a list of GAL4 and UAS lines and schematic maps of GAL4 and UAS vectors useful in the study of Hedgehog (Hh) signaling is given. Finally, uses of the GAL4/UAS system to resolve some of the questions addressed in the study of the Hh pathway are presented.

Key Words

GAL4 UAS GAL80 FLP/FRT GAL4 driver lines UAS responder lines targeted gene expression spatio-temporal control reversible expression gain-of-function 


  1. 1.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  2. 2.
    Giniger, E., Varnum, S. M., and Ptashne, M. (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40, 767–774.PubMedCrossRefGoogle Scholar
  3. 3.
    Ptashne, M. (1988) How eukaryotic transcriptional activators work. Nature 335, 683–689.PubMedCrossRefGoogle Scholar
  4. 4.
    Duffy, J. B. (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34, 1–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Blair, S. S. (2003) Genetic mosaic techniques for studying Drosophila development. Development 130, 5065–5072.PubMedCrossRefGoogle Scholar
  6. 6.
    McGuire, S. E., Roman, G., and Davis, R. L. (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Rorth, P. (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA 93, 12,418–12,422.PubMedCrossRefGoogle Scholar
  8. 8.
    Brand, A. H., Manoukian, A. S., and Perrimon, N. (1994) Ectopic expression in Drosophila. Methods Cell. Biol. 44, 635–654.PubMedCrossRefGoogle Scholar
  9. 9.
    McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768.PubMedCrossRefGoogle Scholar
  10. 10.
    Osterwalder, T., Yoon, K. S., White, B. H., and Keshishian, H. (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl Acad. Sci. U S A 98, 12,596–12,601.PubMedCrossRefGoogle Scholar
  11. 11.
    Rogulja, D. and Irvine, K. D. (2005) Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461.PubMedCrossRefGoogle Scholar
  12. 12.
    Struhl, G. and Basler, K. (1993) Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.PubMedCrossRefGoogle Scholar
  13. 13.
    Strigini, M. and Cohen, S. M. (1997) A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705.PubMedGoogle Scholar
  14. 14.
    Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.PubMedCrossRefGoogle Scholar
  15. 15.
    Kirilly, D., Spana, E. P., Perrimon, N., Padgett, R. W., and Xie, T. (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev. Cell. 9, 651–662.PubMedCrossRefGoogle Scholar
  16. 16.
    Lum, L. and Beachy, P. A. (2004) The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759.PubMedCrossRefGoogle Scholar
  17. 17.
    Ogden, S. K., Ascano, M. Jr., Stegman, M. A., and Robbins, D. J. (2004) Regulation of Hedgehog signaling: a complex story. Biochem. Pharmacol. 67, 805–814.PubMedCrossRefGoogle Scholar
  18. 18.
    Hooper, J. E. and Scott, M. P. (2005) Communicating with Hedgehogs. Nat. Rev. Mol. Cell Biol. 6, 306–317.PubMedCrossRefGoogle Scholar
  19. 19.
    Therond, P. P., Limbourg Bouchon, B., Gallet, A., et al. (1999) Differential requirements of the fused kinase for hedgehog signaling in the Drosophila embryo. Development 126, 4039–4051.PubMedGoogle Scholar
  20. 20.
    Alves, G., Limbourg-Bouchon, B., Tricoire, H., Brissard-Zahraoui, J., Lamour-Isnard, C., and Busson, D. (1998) Modulation of Hedgehog target gene expression by the Fused serine-threonine kinase in wing imaginal discs. Mech. Dev. 78, 17–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Dussillol-Godar, F., Brissard-Zahraoui, J., Limbourg-Bouchon, B., et al. (2006) Modulation of the Suppressor of fused protein regulates the Hedgehog signaling pathway in Drosophila embryo and imaginal discs. Dev. Biol. 291, 53–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Methot, N. and Basler, K. (1999) Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu, A. J., Zheng, L., Suyama, K., and Scott, M. P. (2003) Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev. 17, 1240–1252.PubMedCrossRefGoogle Scholar
  24. 24.
    Goentoro, L. A., Yakoby, N., Goodhouse, J., Schupbach, T., and Shvartsman, S. Y. (2006) Quantitative analysis of the GAL4/UAS system in Drosophila oogenesis. Genesis 44, 66–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Rorth, P. (1998) Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Doren, M., Williamson, A. L., and Lehmann, R. (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246.PubMedCrossRefGoogle Scholar
  27. 27.
    Hacker, U. and Perrimon, N. (1998) DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerlitz, O., Nellen, D., Ottiger, M., and Basler, K. (2002) A screen for genes expressed in Drosophila imaginal discs. Int. J. Dev. Biol. 46, 173–176.PubMedGoogle Scholar
  29. 29.
    Milan, M., Diaz-Benjumea, F. J., and Cohen, S. M. (1998) Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: a model for LMO oncogene function. Genes Dev. 12, 2912–2920.PubMedCrossRefGoogle Scholar
  30. 30.
    Freeman, M. (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660.PubMedCrossRefGoogle Scholar
  31. 31.
    Kramer, J. M. and Staveley, B. E. (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet. Mol. Res. 2, 43–47.PubMedGoogle Scholar
  32. 32.
    Phelps, C. B. and Brand, A. H. (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14, 367–379.PubMedCrossRefGoogle Scholar
  33. 33.
    Sharma, Y., Cheung, U., Larsen, E. W., and Eberl, D. F. (2002) PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in Drosophila. Genesis 34, 115–118.PubMedCrossRefGoogle Scholar
  34. 34.
    Wodarz, A., Hinz, U., Engelbert, M., and Knust, E. (1995) Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771.PubMedGoogle Scholar
  36. 36.
    Sanson, B., White, P., and Vincent, J. P. (1996) Uncoupling cadherin-based adhesion from wingless signaling in Drosophila. Nature 383, 627–630.PubMedCrossRefGoogle Scholar
  37. 37.
    Pignoni, F. and Zipursky, S. L. (1997) Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278.PubMedGoogle Scholar
  38. 38.
    Monge, I., Krishnamurthy, R., Sims, D., et al. (2001) Drosophila transcription factor AP-2 in proboscis, leg and brain central complex development. Development 128, 1239–1252.PubMedGoogle Scholar
  39. 39.
    Zecca, M. and Struhl, G. (2002) Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129, 1357–1368.PubMedGoogle Scholar
  40. 40.
    Huang, Z. and Kunes, S. (1998) Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125, 3753–3764.PubMedGoogle Scholar
  41. 41.
    Struhl, G. and Adachi, A. (1998) Nuclear access and action of notch in vivo. Cell 93, 649–660.PubMedCrossRefGoogle Scholar
  42. 42.
    Capdevila, J. and Guerrero, I. (1994) Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468.PubMedGoogle Scholar
  43. 43.
    Dominguez, M., Brunner, M., Hafen, E., and Basler, K. (1996) Sending and receiving the Hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272, 1621–1625.PubMedCrossRefGoogle Scholar
  44. 44.
    Calleja, M., Moreno, E., Pelaz, S., and Morata, G. (1996) Visualization of gene expression in living adult Drosophila. Science 274, 252–255.PubMedCrossRefGoogle Scholar
  45. 45.
    O’Keefe, D. D., Thor, S., and Thomas, J. B. (1998) Function and specificity of LIM domains in Drosophila nervous system and wing development. Development 125, 3915–3923.PubMedGoogle Scholar
  46. 46.
    Staehling-Hampton, K., Jackson, P. D., Clark, M. J., Brand, A. H., and Hoffmann, F. M. (1994) Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ. 5, 585–593.PubMedGoogle Scholar
  47. 47.
    Chanut, F., Woo, K., Pereira, S., et al. (2002) Rough eye is a gain-of-function allele of amos that disrupts regulation of the proneural gene atonal during Drosophila retinal differentiation. Genetics 160, 623–635.PubMedGoogle Scholar
  48. 48.
    Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M., and Perrimon, N. (1995) Activation of a Drosophila Janus Kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J. 14, 2857–2865.PubMedGoogle Scholar
  49. 49.
    Johnson, R. L., Grenier, J. K., and Scott, M. P. (1995) patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on Hedgehog targets. Development 121, 4161–4170.PubMedGoogle Scholar
  50. 50.
    Forbes, A. J., Spradling, A. C., Ingham, P. W., and Lin, H. (1996) The role of segment polarity genes during early oogenesis in Drosophila. Development 122, 3283–3294.PubMedGoogle Scholar
  51. 51.
    Rintelen, F., Hafen, E., and Nairz, K. (2003) The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 130, 3479–3490.PubMedCrossRefGoogle Scholar
  52. 52.
    Duffy, J. B., Harrison, D. A., and Perrimon, N. (1998) Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271.PubMedGoogle Scholar
  53. 53.
    Gibson, M. C., Lehman, D. A., and Schubiger, G. (2002) Lumenal transmission of decapentaplegic in Drosophila imaginal discs. Dev. Cell 3, 451–460.PubMedCrossRefGoogle Scholar
  54. 54.
    Tanimoto, H., Itoh, S., ten Dijke, P., and Tabata, T. (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Lecuit, T., Brook, W. J., Ng, M., Calleja, M., Sun, H., and Cohen, S. M. (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393.PubMedCrossRefGoogle Scholar
  56. 56.
    Hinz, U., Giebel, B., and Campos-Ortega, J. A. (1994) The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76, 77–87.PubMedCrossRefGoogle Scholar
  57. 57.
    St Pierre, S. E., Galindo, M. I., Couso, J. P., and Thor, S. (2002) Control of Drosophila imaginal disc development by rotund and roughened eye: differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development 129, 1273–1281.PubMedGoogle Scholar
  58. 58.
    Simmonds, A. J., Brook, W. J., Cohen, S. M., and Bell, J. B. (1995) Distinguishable functions for engrailed and invected in anterior-posterior patterning in the Drosophila wing. Nature 376, 424–427.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoffe, K. B., Manoukian, A. S., Wilder, E. L., Brand, A. H., and Perrimon, N. (1995) Evidence for engrailed-independent wingless autoregulation in Drosophila. Dev. Biol. 170, 636–650.PubMedCrossRefGoogle Scholar
  60. 60.
    Hazelett, D. J., Bourouis, M., Walldorf, U., and Treisman, J. E. (1998) Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125, 3741–3751.PubMedGoogle Scholar
  61. 61.
    Lin, D. M. and Goodman, C. S. (1994) Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523.PubMedCrossRefGoogle Scholar
  62. 62.
    Perrin, L., Bloyer, S., Ferraz, C., Agrawal, N., Sinha, P., and Dura, J. M. (2003) The leucine zipper motif of the Drosophila AF10 homologue can inhibit PRE-mediated repression: implications for leukemogenic activity of human MLL-AF10 fusions. Mol. Cell Biol. 23, 119–130.PubMedCrossRefGoogle Scholar
  63. 63.
    Wernet, M. F., Labhart, T., Baumann, F., Mazzoni, E. O., Pichaud, F., and Desplan, C. (2003) Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115, 267–279.PubMedCrossRefGoogle Scholar
  64. 64.
    Crew, J. R., Batterham, P., and Pollock, J. A. (1997) Developing compound eye in lozenge mutants of Drosophila: lozenge expression in the R7 equivalence group. Dev. Genes Evol. 206, 481–493.CrossRefGoogle Scholar
  65. 65.
    Shiga, Y., Tanaka-Matakatsu, M., and Hayashi, S. (1996) A nuclear/β-galatosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106.CrossRefGoogle Scholar
  66. 66.
    Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E., and Cherbas, P. (2003) EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271–284.PubMedCrossRefGoogle Scholar
  67. 67.
    Brand, A. H. and Perrimon, N. (1994) Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 8, 629–639.PubMedCrossRefGoogle Scholar
  68. 68.
    Rorth, P., Szabo, K., Bailey, A., et al. (1998) Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057.PubMedGoogle Scholar
  69. 69.
    Jhaveri, D., Sen, A., Reddy, G. V., and Rodrigues, V. (2000) Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal. Mech. Dev. 99, 101–111.PubMedCrossRefGoogle Scholar
  70. 70.
    Tabata, T., Schwartz, C., Gustavson, E., Ali, Z., and Kornberg, T. B. (1995) Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121, 3359–3369.PubMedGoogle Scholar
  71. 71.
    Guillen, I., Mullor, J. L., Capdevila, J., Sanchez-Herrero, E., Morata, G., and Guerrero, I. (1995) The function of engrailed and the specification of Drosophila wing pattern. Development 121, 3447–3456.PubMedGoogle Scholar
  72. 72.
    Lawrence, P. A., Casal, J., and Struhl, G. (1999) Hedgehog and engrailed: pattern formation and polarity in the Drosophila abdomen. Development 126, 2431–2439.PubMedGoogle Scholar
  73. 73.
    Alexandre, C. and Vincent, J. P. (2003) Requirements for transcriptional repression and activation by Engrailed in Drosophila embryos. Development 130, 729–739.PubMedCrossRefGoogle Scholar
  74. 74.
    Ingham, P. W. and Fietz, M. J. (1995) Quantitative effects of Hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr. Biol. 5, 432–440.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, J. D., Kraus, P., Gaiano, N., et al. (2001) An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136.PubMedCrossRefGoogle Scholar
  76. 76.
    Burke, R., Nellen, D., Bellotto, M., et al. (1999) Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815.PubMedCrossRefGoogle Scholar
  77. 77.
    Torroja, C., Gorfinkiel, N., and Guerrero, I. (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 131, 2395–2408.PubMedCrossRefGoogle Scholar
  78. 78.
    Porter, J. A., von Kessler, D. P., Ekker, S. C., et al. (1995) The product of Hedgehog autoproteolytic cleavage active in local and long-range signaling. Nature 374, 363–366.PubMedCrossRefGoogle Scholar
  79. 79.
    Chamoun, Z., Mann, R. K., Nellen, D., et al. (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the Hedgehog signal. Science 293, 2080–2084.PubMedCrossRefGoogle Scholar
  80. 80.
    Gallet, A., Rodriguez, R., Ruel, L., and Therond, P. P. (2003) Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to Hedgehog. Dev. Cell 4, 191–204.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen, Y. and Struhl, G. (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563.PubMedCrossRefGoogle Scholar
  82. 82.
    Vegh, M. and Basler, K. (2003) A genetic screen for Hedgehog targets involved in the maintenance of the Drosophila anteroposterior compartment boundary. Genetics 163, 1427–1438.PubMedGoogle Scholar
  83. 83.
    Johnson, R. L., Milenkovic, L., and Scott, M. P. (2000) In vivo functions of the patched protein: requirement of the C terminus for target gene inactivation but not Hedgehog sequestration. Mol. Cell 6, 467–478.PubMedCrossRefGoogle Scholar
  84. 84.
    Briscoe, J., Chen, Y., Jessell, T. M., and Struhl, G. (2001) A Hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic Hedgehog in the neural tube. Mol. Cell 7, 1279–1291.PubMedCrossRefGoogle Scholar
  85. 85.
    Strutt, H., Thomas, C., Nakano, Y., et al. (2001) Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr. Biol. 11, 608–613.PubMedCrossRefGoogle Scholar
  86. 86.
    Johnson, R. L., Zhou, L., and Bailey, E. C. (2002) Distinct consequences of sterol sensor mutations in Drosophila and mouse patched homologs. Dev. Biol. 242, 224–235.PubMedCrossRefGoogle Scholar
  87. 87.
    Denef, N., Neubuser, D., Perez, L., and Cohen, S. M. (2000) Hedgehog induces opposite changes in turnover and subcellular localization of Patched and Smoothened. Cell 102, 521–531.PubMedCrossRefGoogle Scholar
  88. 88.
    Apionishev, S., Katanayeva, N. M., Marks, S. A., Kalderon, D., and Tomlinson, A. (2005) Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat. Cell Biol. 7, 86–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Ingham, P. W., Nystedt, S., Nakano, Y., et al. (2000) Patched represses the Hedgehog signaling pathway by promoting modification of the Smoothened protein. Curr. Biol. 10, 1315–1318.PubMedCrossRefGoogle Scholar
  90. 90.
    Jia, J., Tong, C., Wang, B., Luo, L., and Jiang, J. (2004) Hedgehog signaling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432, 1045–1050.PubMedCrossRefGoogle Scholar
  91. 91.
    Jia, J., Tong, C., and Jiang, J. (2003) Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev. 17, 2709–2720.PubMedCrossRefGoogle Scholar
  92. 92.
    Hooper, J. E. (2003) Smoothened translates Hedgehog levels into distinct responses. Development 130, 3951–3963.PubMedCrossRefGoogle Scholar
  93. 93.
    Nakano, Y., Nystedt, S., Shivdasani, A. A., Strutt, H., Thomas, C., and Ingham, P. W. (2004) Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech. Dev. 121, 507–518.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang, G., Amanai, K., Wang, B., and Jiang, J. (2000) Interactions with Costal2 and Suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev. 14, 2893–2905.PubMedCrossRefGoogle Scholar
  95. 95.
    Ho, K. S., Suyama, K., Fish, M., and Scott, M. P. (2005) Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development 132, 1401–1412.PubMedCrossRefGoogle Scholar
  96. 96.
    Alexandre, C., Jacinto, A., and Ingham, P. W. (1996) Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10, 2003–2013.PubMedCrossRefGoogle Scholar
  97. 97.
    Hepker, J., Wang, Q. T., Motzny, C. K., Holmgren, R., and Orenic, T. V. (1997) Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124, 549–558.PubMedGoogle Scholar
  98. 98.
    Price, M. A. and Kalderon, D. (1999) Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein kinase A. Development 126, 4331–4339.PubMedGoogle Scholar
  99. 99.
    Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C., and Kornberg, T. B. (1997) Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053.PubMedCrossRefGoogle Scholar
  100. 100.
    Chen, Y., Cardinaux, J. R., Goodman, R. H., and Smolik, S. M. (1999) Mutants of cubitus interruptus that are independent of PKA regulation are independent of Hedgehog signaling. Development 126, 3607–3616.PubMedGoogle Scholar
  101. 101.
    Wang, G., Wang, B., and Jiang, J. (1999) Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev. 13, 2828–2837.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang, Q. T. and Holmgren, R. A. (1999) The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development 126, 5097–5106.PubMedGoogle Scholar
  103. 103.
    Methot, N. and Basler, K. (2000) Suppressor of fused opposes Hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127, 4001–4010.PubMedGoogle Scholar
  104. 104.
    Chen, Y., Goodman, R. H., and Smolik, S. M. (2000) Cubitus interruptus requires Drosophila CREB-binding protein to activate wingless expression in the Drosophila embryo. Mol. Cell Biol. 20, 1616–1625.PubMedCrossRefGoogle Scholar
  105. 105.
    Jia, J., Amanai, K., Wang, G., Tang, J., Wang, B., and Jiang, J. (2002) Shaggy/GSK3 antagonizes Hedgehog signaling by regulating Cubitus interruptus. Nature 416, 548–552.PubMedCrossRefGoogle Scholar
  106. 106.
    Price, M. A. and Kalderon, D. (2002) Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823–835.PubMedCrossRefGoogle Scholar
  107. 107.
    Kiger, J. A. Jr., Eklund, J. L., Younger, S. H., and O’Kane, C. J. (1999) Transgenic inhibitors identify two roles for protein kinase A in Drosophila development. Genetics 152, 281–290.PubMedGoogle Scholar
  108. 108.
    Kiger, J. A. Jr. and O’Shea, C. (2001) Genetic evidence for a protein kinase A/cubitus interruptus complex that facilitates processing of cubitus interruptus in Drosophila. Genetics 158, 1157–1166.PubMedGoogle Scholar
  109. 109.
    Yoshida, S., Muller, H. A., Wodarz, A., and Ephrussi, A. (2004) PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning. Development 131, 1401–1410.PubMedCrossRefGoogle Scholar
  110. 110.
    Li, W., Ohlmeyer, J. T., Lane, M. E., and Kalderon, D. (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562.PubMedCrossRefGoogle Scholar
  111. 111.
    Hidalgo, A., Urban, J., and Brand, A. H. (1995) Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development 121, 3703–3712.PubMedGoogle Scholar
  112. 112.
    Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.PubMedCrossRefGoogle Scholar
  113. 113.
    Halfon, M. S., Gisselbrecht, S., Lu, J., Estrada, B., Keshishian, H., and Michelson, A. M. (2002) New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34, 135–138.PubMedCrossRefGoogle Scholar
  114. 114.
    Koh, Y. H., Popova, E., Thomas, U., Griffith, L. C., and Budnik, V. (1999) Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98, 353–363.PubMedCrossRefGoogle Scholar
  115. 115.
    Roignant, J. Y., Carre, C., Mugat, B., Szymczak, D., Lepesant, J. A., and Antoniewski, C. (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. Rna 9, 299–308.PubMedCrossRefGoogle Scholar
  116. 116.
    Casso, D., Ramirez-Weber, F., and Kornberg, T. B. (2000) GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech. Dev. 91, 451–454.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Denise Busson
    • 1
  • Anne-Marie Pret
    • 2
  1. 1.Institut Jacques Monod (UMR7592-CNRS/Universités Paris VI et VII)Paris CedexFrance
  2. 2.Centre de Génétique Moléculaire (UPR2167-CNRS associé à l’Université Paris VI), de la Terrasse Gif sur YvetteFrance

Personalised recommendations