Advertisement

Clonal Analysis of Hedgehog Signaling in Drosophila Somatic Tissues

  • Christine M. Bankers
  • Joan E. Hooper
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)

Abstract

To fully understand how animals develop, it is often necessary to remove the function of a particular gene in a specific cell type or subset of cells. In Drosophila melanogaster, mosaic animals have been widely utilized to study cell fate, growth and patterning, and restriction of cell fate. This chapter describes using FLP recombinase to generate mosaic Drosophila, discussing the chromosomes and cross scheme, how to induce the clones, how to properly identify the appropriate progeny, and how to prepare and analyze the tissues, clones, and phenotypes. It then presents three examples, applying this technique to study Hedgehog signaling. The first example describes moderate-sized costal clones in imaginal discs, using green fluorescent protein (GFP) as a marker and dppLacZ and Engrailed expression as phenotypic reporters. The second describes filling the adult eye with roadkill mutant clones, using white as a marker and scoring morphology. The third describes clonal misexpression of a truncated form of Smoothened, using GFP and yellow as markers.

Key Words

Drosophila mitotic recombination FLP recombinase clonal analysis Hedgehog signaling 

References

  1. 1.
    Postlethwait, J. H. (1976) Clonal analysis of Drosophila cuticle patterns. In The Genetics and Biology of Drosophila (Ashburner, M. and Wright, T. R. F., eds), Vol. 2c, Academic Press, New York, pp. 359–441.Google Scholar
  2. 2.
    Ashburner, M. (1989) Drosophila: A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  3. 3.
    Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.CrossRefPubMedGoogle Scholar
  4. 4.
    Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.PubMedGoogle Scholar
  5. 5.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  6. 6.
    Garcia-Bellido, A. and Dapena, J. (1974) Induction, detection and characterization of cell differentiation mutants in Drosophila. Mol. Gen. Genet. 128, 117–130.CrossRefPubMedGoogle Scholar
  7. 7.
    Stowers, R. S. and Schwarz, T. L. (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639.PubMedGoogle Scholar
  8. 8.
    Moreno, E., Basler, K., and Morata, G. (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759.CrossRefPubMedGoogle Scholar
  9. 9.
    Motzny, C. K. and Holmgren, R. (1995) The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52, 137–150.CrossRefPubMedGoogle Scholar
  10. 10.
    Capdevila, J. and Guerrero, I. (1994) Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468.PubMedGoogle Scholar
  11. 11.
    Crozatier, M. and Vincent, A. (1999) Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signaling. Development 126, 1495–1504.PubMedGoogle Scholar
  12. 12.
    Diez del Corral, R., Aroca, P., Gmez-Skarmeta, J.L., Cavodeassi, F., and Modolell, J. (1999) The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev. 13, 1754–1761.CrossRefPubMedGoogle Scholar
  13. 13.
    Bentrop, J., Schwab, K., Pak, W. L., and Paulsen, R. (1997) Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state. EMBO J. 16, 1600–1609.CrossRefPubMedGoogle Scholar
  14. 14.
    Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771.PubMedGoogle Scholar
  15. 15.
    Lee, T. and Luo, L. (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.CrossRefPubMedGoogle Scholar
  17. 17.
    Methot, N. and Basler, K. (2000) Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127, 4001–4010.PubMedGoogle Scholar
  18. 18.
    Hooper, J. E. (2003) Smoothened translates Hedgehog levels into distinct responses. Development 130, 3951–3963.CrossRefPubMedGoogle Scholar
  19. 19.
    Struhl, G. and Basler, K. (1993) Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.CrossRefPubMedGoogle Scholar
  20. 20.
    Chou, T. B. and Perrimon, N. (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653.PubMedGoogle Scholar
  21. 21.
    Methot, N. and Basler, K. (1999) Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen, Y. and Struhl, G. (1996) In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex. Cell 87, 553–563.CrossRefPubMedGoogle Scholar
  23. 23.
    Sisson, J. C., Ho, K. S., Suyama, K., and Scott, M. P. (1997) Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, W., Ohlmeyer, J. T., Lane, M. E., and Kalderon, D. (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562.CrossRefPubMedGoogle Scholar
  25. 25.
    Lefers, M. A., Wang, Q. T., and Holmgren, R. A. (2001) Genetic dissection of the Drosophila Cubitus interruptus signaling complex. Dev. Biol. 236, 411–420.CrossRefPubMedGoogle Scholar
  26. 26.
    Jiang, J. and Struhl, G. (1995) Protein kinase A and Hedgehog signaling in Drosophila limb development. Cell 80, 563–572.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Christine M. Bankers
    • 1
  • Joan E. Hooper
    • 1
  1. 1.Program in Molecular BiologyUniversity of Colorado Health Sciences CenterAuroraUSA

Personalised recommendations