Germline Clone Analysis for Maternally Acting Drosophila Hedgehog Components

  • Erica M. Selva
  • Beth E. Stronach
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)


Many of the genes of Drosophila melanogaster have their transcripts deposited in developing oocytes. These maternally loaded gene products enable an otherwise homozygous mutant embryo to survive beyond the first stage of development for which the gene product is required. Zygotic mutations that disrupt the Hedgehog signal transduction pathway typically yield a segment polarity ‘lawn of denticles’ cuticle phenotype. However, an embryo homozygous mutant for a gene can achieve normal embryonic segmentation precluding classification of the gene as a component of the Hh pathway, if wild-type transcripts from the mother are present. This chapter discusses the theory and importance of analyzing germline clone embryos for maternally acting genes involved in Hh signal transduction, and describes in detail the method to generate mutant germline clone embryos.

Key Words

Germline clone embryos germline stem cells Hh signal transduction recombination FLP recombinase maternal transcripts Drosophila 


  1. 1.
    Arbeitman, M. N., Furlong, E. E., Imam, F., et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275.CrossRefPubMedGoogle Scholar
  2. 2.
    Chou, T. B. and Perrimon, N. (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653.PubMedGoogle Scholar
  3. 3.
    Chou, T. and Perrimon, N. (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679.PubMedGoogle Scholar
  4. 4.
    Chou, T. B., Noll, E., and Perrimon, N. (1993) Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369.PubMedGoogle Scholar
  5. 5.
    The, I., Bellaiche, Y., and Perrimon, N. (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell. 4, 633–639.CrossRefPubMedGoogle Scholar
  6. 6.
    Han, C., Belenkaya, T. Y., Khodoun, M., Tauchi, M., Lin, X., and Lin, X. (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signaling and gradient formation. Development 131, 1563–1575.CrossRefPubMedGoogle Scholar
  7. 7.
    Ingham, P. W. and Martinez Arias, A. (1992) Boundaries and fields in early embryos. Cell 68, 221–235.CrossRefPubMedGoogle Scholar
  8. 8.
    Perrimon, N. (1994) The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784.CrossRefPubMedGoogle Scholar
  9. 9.
    DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A., and O’Farrell, P. H. (1988) Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604–609.CrossRefPubMedGoogle Scholar
  10. 10.
    Martinez-Arias, A., Baker, N., and Ingham, P. W. (1988) Role of segment polarity genes in the definition and maintenance of cell states in Drosophila embryo. Development 103, 157–170.Google Scholar
  11. 11.
    Heemskerk, J., DiNardo, S., Kostriken, R., and O’Farrell, P. H. (1991) Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404–410.CrossRefPubMedGoogle Scholar
  12. 12.
    Bejsovec, A. and Martinez Arias, A. (1991) Roles of wingless in patterning the larval epidermis of Drosophila. Development 113, 471–485.PubMedGoogle Scholar
  13. 13.
    Rothwell, F. and Sullivan, W. (2000) Fluorescent analysis of Drosophila embryos. In Drosophila Protocols, Cold Spring Harbor Laboratory Press, New York, pp. 141–157.Google Scholar
  14. 14.
    Patel, N. H. (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol. 44, 445–487.CrossRefPubMedGoogle Scholar
  15. 15.
    Parthasarathy, N., Lecuyer, E., and Krause, H. M. (2005) Optimized protocols for fluorescent in situ hybridization in Drosophila tissues. In Methods in Molecular Biology: Protocols in Confocal Microscopy (Paddock, S., ed.) Humana Press Inc.Google Scholar
  16. 16.
    Tautz, D. and Pfeifle, C. (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Hatini, V. and DiNardo, S. (2001) Divide and conquer: pattern formation in Drosophila embryonic epidermis. Trends Genet. 17, 574–579.CrossRefPubMedGoogle Scholar
  18. 18.
    Franch-Marro, X., Marchand, O., Piddini, E., Ricardo, S., Alexandre C., and Vincent J. P. (2005) Glypicans shunt the Wingless signal between local signaling and further transport. Development 132, 659–666.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Erica M. Selva
    • 1
  • Beth E. Stronach
    • 2
  1. 1.Department of Biological SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations