RNAi in the Hedgehog Signaling Pathway: pFRiPE, a Vector for Temporally and Spatially Controlled RNAi in Drosophila

  • Eric Marois
  • Suzanne Eaton
Part of the Methods Inmolecular Biology™ book series (MIMB, volume 397)


RNA interference (RNAi) has become an irreplaceable tool for reverse genetics in plants and animals. The universality and specificity of this phenomenon allows silencing of virtually any chosen gene to examine its involvement in biological processes. Many strategies exist to reduce the expression of a particular gene using RNAi. Some rely on delivering directly to cells the ∼21-nucleotide long interfering double-stranded RNA (dsRNA) species that are central mediators of the silencing process. Others rely on the transgenic expression of longer dsRNA molecules, leaving it to the cellular machinery to process these hairpins into short active dsRNA.

In this chapter, we describe a transgenic method to deplete a chosen protein from a specific Drosophila tissue following induction of long dsRNA. It was used to uncover the role of lipidic particles in Hedgehog signaling by silencing lipophorin in the fat body (1), and we routinely use it to deplete specific proteins from wing imaginal disc subdomains (2). The method, certainly not restricted to the study of Hedgehog signaling, allows fast and efficient construction of a plasmid incorporating various Drosophila genetic tools to allow heat-shock-induced expression of dsRNA at the desired time and in the desired tissue. For protocols involving injection of in vitro synthesized dsRNA in embryos to study Hedgehog signaling, see for example (3). For genomic screens to identify Hedgehog pathway components in tissue culture cells by transfection of small interfering RNAs, see refs. (4,5).

Key Words

Inducible RNAi tissue-specific RNAi Drosophila wing imaginal disc Gal4/UAS FLP/FRT pFRiPE 


  1. 1.
    Panáková, D., Sprong, H., Marois, E., Thiele, C., and Eaton, S. (2005) Lipoprotein particles are required for Hedgehog and Wingless signaling. Nature 435, 58–65CrossRefPubMedGoogle Scholar
  2. 2.
    Marois, E., Mahmoud, A., and Eaton, S. (2006) The endocytic pathway and formation of the Wingless morphogen gradient. Development 133, 307–317.CrossRefPubMedGoogle Scholar
  3. 3.
    Desbordes, S. C. and Sanson, B. (2003) The glypican Dally-like is required for Hedgehog signaling in the embryonic epidermis of Drosophila. Development 130, 6245–6255.CrossRefPubMedGoogle Scholar
  4. 4.
    Lum, L., Yao, S., Mozer, B., et al. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.CrossRefPubMedGoogle Scholar
  5. 5.
    Nybakken, K., Vokes, S. A., Lin, T. Y., McMahon, A. P., and Perrimon, N. (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nature Genet. 37, 1323–1332.CrossRefPubMedGoogle Scholar
  6. 6.
    Kennerdell, J. R. and Carthew, R. W. (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898.CrossRefGoogle Scholar
  7. 7.
    Martinek, S. and Young, M. W. (2000) Specific genetic interference with behavioral rythms in Drosophila by expression of inverted repeats. Genetics 156, 1717–1725.PubMedGoogle Scholar
  8. 8.
    Fortier, E. and Belote, J. M. (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244.CrossRefPubMedGoogle Scholar
  9. 9.
    Billuart, P., Winter, C. G., Maresh, A., Zhao, X., and Luo, L. (2001) Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signal pathway. Cell 107, 195–207.CrossRefPubMedGoogle Scholar
  10. 10.
    Piccin, A., Salameh, A., Benna, C., et al. (2001) Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, e55.CrossRefPubMedGoogle Scholar
  11. 11.
    Reichhart, J. M., Ligoxygakis, P., Naitza, S., Woerfel, G., Imler, J. L., and Gubb, D. (2002) Splice-activated UAS hairpin vector gives complete RNAi knockout of single or double target transcripts in Drosophila melanogaster. Genesis 34, 160–164.CrossRefPubMedGoogle Scholar
  12. 12.
    Enerly, E., Larsson, J., and Lambertsson, A. (2002) Reverse genetics in Drosophila: From sequence to phenotype using UAS-RNAi transgenic flies. Genesis 34, 152–155.CrossRefPubMedGoogle Scholar
  13. 13.
    Kalidas, S. S. D. (2002) Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184.CrossRefPubMedGoogle Scholar
  14. 14.
    Giordano, E., Rendina, R., Peluso, I., and Furia, M. (2002) RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648.PubMedGoogle Scholar
  15. 15.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  16. 16.
    Duffy, J. B. (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34, 1–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Filipowicz, W. (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, Y. S. and Carthew, R. W. (2003) Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322–329.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320.CrossRefPubMedGoogle Scholar
  20. 20.
    Golic, K. (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961.CrossRefPubMedGoogle Scholar
  21. 21.
    Wesley, S. V., Helliwell, C. A., Smith, N. A., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant J. 27, 581–590.CrossRefGoogle Scholar
  22. 22.
    Henschel, A., Buchholz, F., and Habermann, B. (2004) DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32, W113–W120.CrossRefPubMedGoogle Scholar
  23. 23.
    McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Eric Marois
    • 1
  • Suzanne Eaton
    • 2
  1. 1.Institute of Molecular and Cellular BiologyStrasbourg CedexFrance
  2. 2.MPI for Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations