Skip to main content

Analyzing Patterns of Microbial Evolution Using the Mauve Genome Alignment System

  • Protocol
Book cover Comparative Genomics

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 396))

Summary

During the course of evolution, genomes can undergo large-scale mutation events such as rearrangement and lateral transfer. Such mutations can result in significant variations in gene order and gene content among otherwise closely related organisms. The Mauve genome alignment system can successfully identify such rearrangement and lateral transfer events in comparisons of multiple microbial genomes even under high levels of recombination. This chapter outlines the main features of Mauve and provides examples that describe how to use Mauve to conduct a rigorous multiple genome comparison and study evolutionary patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  CAS  PubMed  Google Scholar 

  3. Higgins, D. G. and Sharp, P. M. (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244.

    Article  CAS  PubMed  Google Scholar 

  4. Notredame, C., Higgins, D. G., and Heringa, J. (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217.

    Article  CAS  PubMed  Google Scholar 

  5. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, C., Grasso, C., and Sharlow, M. F. (2002) Multiple sequence alignment using partial order graphs. Bioinformatics 18, 452–464.

    Article  CAS  PubMed  Google Scholar 

  7. Abouelhoda, M. I. and Ohlebusch, E. (2003) A local chaining algorithm and its applications in comparative genomics. Algorithms in Bioinformatics, Proceedings 2812, 1–16.

    Article  Google Scholar 

  8. Haas, B. J., Delcher, A. L., Wortman, J. R., and Salzberg, S. L. (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20, 3643–3646.

    Article  CAS  PubMed  Google Scholar 

  9. Hampson, S. E., Gaut, B. S., and Baldi, P. (2005) Statistical detection of chromosomal homology using shared-gene density alone. Bioinformatics 21, 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  10. Hampson, S., McLysaght, A., Gaut, B., and Baldi, P. (2003) LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome Res. 13, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  11. Tesler, G. (2002) GRIMM: genome rearrangements web server. Bioinformatics 18, 492–493.

    Article  CAS  PubMed  Google Scholar 

  12. Spang, R., Rehmsmeier, M., and Stoye, J. (2002) A novel approach to remote homology detection: Jumping alignments. Journal of Computational Biology 9, 747–760.

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese, P. P., Chakravarty, S., and Vision, T. J. (2003) Fast identification and statistical evaluation of segmental homologies in comparative maps. Bioinformatics 19, i74–i80.

    Article  PubMed  Google Scholar 

  14. Darling, A. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004) GRIL: genome rearrangement and inversion locator. Bioinformatics 20, 122–124.

    Article  CAS  PubMed  Google Scholar 

  15. Durbin, R. (1998) Biological Sequence Analysis: Probabalistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK, pp. xi, 356.

    Google Scholar 

  16. Fitch, W. M. (2000) Homology a personal view on some of the problems. Trends Genet. 16, 227–231.

    Article  CAS  PubMed  Google Scholar 

  17. Larget, B., Kadane, J. B., and Simon, D. L. (2005) A Bayesian approach to the estimation of ancestral genome arrangements. Mol. Phylogenet. Evol. 36, 214–223.

    Article  CAS  PubMed  Google Scholar 

  18. Bourque, G. and Pevzner, P. A. (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12, 26–36.

    CAS  PubMed  Google Scholar 

  19. Wu, S. and Gu, X. (2003) Algorithms for multiple genome rearrangement by signed reversals. Pac. Symp. Biocomput. 363–374.

    Google Scholar 

  20. Lu, C. L., Wang, T. C., Lin, Y. C., and Tang, C. Y. (2005) ROBIN: a tool for genome rearrangement of block-interchanges. Bioinformatics 21, 2780–2782.

    Article  CAS  PubMed  Google Scholar 

  21. Yancopoulos, S., Attie, O., and Friedberg, R. (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346.

    Article  CAS  PubMed  Google Scholar 

  22. Holder, M. and Lewis, P. O. (2003) Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, Z., Ro, S., and Rannala, B. (2003) Likelihood models of somatic mutation and codon substitution in cancer genes. Genetics 165, 695–705.

    CAS  PubMed  Google Scholar 

  24. Lunter, G., Ponting, C. P., and Hein, J. (2006) Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model. PLoS Comput. Biol. 2, e5.

    Article  PubMed  Google Scholar 

  25. Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403.

    Article  CAS  PubMed  Google Scholar 

  26. Brudno, M., Malde, S., Poliakov, A., et al. (2003) Glocal alignment: finding rearrangements during alignment. Bioinformatics 19, i54–i62.

    Article  PubMed  Google Scholar 

  27. Ovcharenko, I., Loots, G. G., Giardine, B. M., et al. (2005) Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 15, 184–194.

    Article  CAS  PubMed  Google Scholar 

  28. Treangen, T. J. and Messeguer, X. (2006) M-GCAT: interactively and efficiency constructing large-scale multiple genome comparision frameworks in closely related species. BMC Bioinformatics 7, 433.

    Article  PubMed  Google Scholar 

  29. Kurtz, S., Phillippy, A., Delcher, A. L., et al. (2004) Versatile and open software for comparing large genomes. Genome Biol. 5, R12.

    Article  PubMed  Google Scholar 

  30. Hohl, M., Kurtz, S., and Ohlebusch, E. (2002) Efficient multiple genome alignment. Bioinformatics 18, S312–S320.

    PubMed  Google Scholar 

  31. Blanchette, M., Kent, W. J., Riemer, C., et al. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715.

    Article  CAS  PubMed  Google Scholar 

  32. Bray, N. and Pachter, L. (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res. 14, 693–699.

    Article  CAS  PubMed  Google Scholar 

  33. Brudno, M., Do, C. B., Cooper, G. M., et al. (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731.

    Article  CAS  PubMed  Google Scholar 

  34. Choi, K. P., Zeng, F., and Zhang, L. (2004) Good spaced seeds for homology search. Bioinformatics 20, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  35. Henz, S. R., Huson, D. H., Auch, A. F., Nieselt-Struwe, K., and Schuster, S. C. (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21, 2329–2335.

    Article  CAS  PubMed  Google Scholar 

  36. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  37. Cleri, D. J., Vernaleo, J. R., Lombardi, L. J., et al. (1997) Plague pneumonia disease caused by Yersinia pestis. Semin. Respir. Infect. 12, 12–23.

    CAS  PubMed  Google Scholar 

  38. Carniel, E. (2003) Evolution of pathogenic Yersinia, some lights in the dark. Adv. Exp. Med. Biol. 529, 3–12.

    Article  PubMed  Google Scholar 

  39. Chain, P. S., Carniel, E., Larimer, F. W., et al. (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 101, 13,826–13,831.

    Article  CAS  Google Scholar 

  40. Hinnebusch, B. J. (2005) The evolution of flea-borne transmission in Yersinia pestis. Curr. Issues Mol. Biol. 7, 197–212.

    CAS  PubMed  Google Scholar 

  41. Perna, N. T., Plunkett, G., 3rd, Burland, V., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  CAS  PubMed  Google Scholar 

  42. Hsiao, W. W., Ung, K., Aeschliman, D., Bryan, J., Finlay, B. B., and Brinkman, F. S. (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet. 1, e62.

    Article  PubMed  Google Scholar 

  43. Tettelin, H., Masignani, V., Cieslewicz, M. J., et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA 102, 13,950–13,955.

    Google Scholar 

  44. Terzian, C., Ferraz, C., Demaille, J., and Bucheton, A. 2000) Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol. Biol. Evol. 17, 908–914.

    CAS  PubMed  Google Scholar 

  45. Lord, P. W., Selley, J. N., and Attwood, T. K. (2002) CINEMA-MX: a modular multiple alignment editor. Bioinformatics 18, 1402–1403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by National Institutes of Health grant GM62994-02. A.E.D. was supported by NLM grant 5T15LM007359-05. T.J.T. was supported by Spanish Ministry MECD research grant TIN2004-03382-2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Darling, A.E., Treangen, T.J., Messeguer, X., Perna, N.T. (2007). Analyzing Patterns of Microbial Evolution Using the Mauve Genome Alignment System. In: Bergman, N.H. (eds) Comparative Genomics. Methods In Molecular Biology™, vol 396. Humana Press. https://doi.org/10.1007/978-1-59745-515-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-515-2_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-37-4

  • Online ISBN: 978-1-59745-515-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics