Skip to main content

Comparative Analysis of RNA Genes

The caRNAc Software

  • Protocol
Comparative Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 395))

Summary

RNA genes are ubiquitous in the cell and are involved in a number of biochemical processes. Because there is a close relationship between function and structure, software tools that predict the secondary structure of noncoding RNAs from the base sequence are very helpful. In this article, we focus our attention on the inference of conserved secondary structure for a group of homologous RNA sequences. We present the caRNAc software, which enables the analysis of families of homologous sequences without prior alignment. The method relies both on comparative analysis and thermodynamic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eddy, S. R. (2001) Non-coding RNA genes and the modern RNA world. Nat. Rev. Gen. 2, 919–929.

    Article  CAS  Google Scholar 

  2. Eddy, S. R. (2004) How do RNA folding algorithms work. Nat. Biotechnol. 22, 1457–1458.

    Article  CAS  PubMed  Google Scholar 

  3. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  4. Zuker, M., Mathews, D. H., and Turner, D. H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, in RNA Biochemistry and Biotechnology, (Barciszewski, J. and Clark, B.F.C., eds.), Kluwer Academic Publishers, Dordrecht/Norwell, MA.

    Google Scholar 

  5. Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J. W. and Ellis, J. C. (2005) Comparative analysis of RNA secondary structure: the 6S RNA, in Handbook of RNA Biochemistry, (Bindereif, A., Hartmann, R., Schön, A., and Westhof, E., eds.), Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  7. Gardner, P., Wilm, A., and Washietl, S. (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res. 33, 2433–2439.

    Article  CAS  PubMed  Google Scholar 

  8. Perriquet, O., Touzet, H., and Dauchet, M. (2003) Finding the common structure shared by two homologous RNAs. Bioinformatics 19, 108–116.

    Article  CAS  PubMed  Google Scholar 

  9. Touzet, H. and Perriquet, O. (2004) CARNAC: folding families of non coding RNAs. Nucleic Acids Res. 142, W142–W145.

    Article  Google Scholar 

  10. Gardner, P. and Giegerich, R. (2005) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5, 140.

    Article  Google Scholar 

  11. Bruccoleri, R. and Heinrich, G. (1988) An improved algorithm for nucleic acid secondary structure display. Comput. Appl. Biosci. 4, 167–173.

    CAS  PubMed  Google Scholar 

  12. Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  13. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  Google Scholar 

  14. Xayaphoummine, A., Bucher, T., and Isambert, H. (2005) Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots, Nucleic Acid Res. 33, 605–610.

    Article  Google Scholar 

  15. Ji, Y., Xu, X., and Stormo, G. D. (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20, 1591–1602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Touzet, H. (2007). Comparative Analysis of RNA Genes. In: Bergman, N.H. (eds) Comparative Genomics. Methods in Molecular Biology™, vol 395. Humana Press. https://doi.org/10.1007/978-1-59745-514-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-514-5_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-693-1

  • Online ISBN: 978-1-59745-514-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics