Skip to main content

Using Monomolecular Films to Characterize Lipid Lateral Interactions

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Membrane lipids are structurally diverse in ways that far exceed the role envisioned by Singer and Nicholson of simply providing a fluid bilayer matrix in which proteins reside. Current models of lipid organization in membranes postulate that lipid structural diversity enables nonrandom lipid mixing in each leaflet of the bilayer, resulting in regions with special physical and functional properties, i.e., microdomains. Central to understanding the tendencies of membrane lipids to mix nonrandomly in biomembranes is the identification and evaluation of structural features that control membrane lipid lateral mixing interactions in simple model membranes. The surface balance provides a means to evaluate the lateral interactions among different lipids at a most fundamental level-mixed in binary/ternary combinations that self-assemble at the air-water interface as monomolecular films, i.e., monolayers. Analysis of surface pressure and interfacial potential as a function of average cross-sectional molecular area provide insights into hydrocarbon chain ordering, lateral compressibility/elasticity, and dipole effects under various conditions including those that approximate one leaflet of a bilayer. Although elegantly simple in principle, effective use of the surface balance requires proper attention to various experimental parameters, which are described herein. Adequate attention to these experimental parameters ensures that meaningful insights are obtained into the lipid lateral interactions and enables lipid monolayers to serve as a basic platform for use with other investigative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorter, E. and Grendel, F. (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J. Exp. Med. 41, 439–443.

    Article  CAS  PubMed  Google Scholar 

  2. Rice, P. A. and McConnell, H. M. (1989) Critical shape transitions of monolayer lipid domains. Proc. Natl. Acad. Sci. USA 86, 6445–6448.

    Article  CAS  PubMed  Google Scholar 

  3. Möwald, H. (1990) Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu. Rev. Phys. Chem. 441, 441–476.

    Article  Google Scholar 

  4. McConnell, H. M. (1991) Structures and transitions in lipid monolayers at the air-water interface. Annu. Rev. Phys. Chem. 42, 171–195.

    Article  CAS  Google Scholar 

  5. Keller, S. L., Pitcher, W. H., III., Huestis, W. H., and McConnell, H. M. (1998) Red blood cells lipids form immiscible liquids. Phys. Rev. Lett. 81, 5019–5022.

    Article  CAS  Google Scholar 

  6. McConnell, H. M. and Vrljic, M. (2003) Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32, 469–492.

    Article  CAS  PubMed  Google Scholar 

  7. Silvius, J. R. (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim. Biophys. Acta 1610, 174–183.

    Article  CAS  PubMed  Google Scholar 

  8. Simons, K. and Vaz, W. L. C. (2004) Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 332, 269–295.

    Article  Google Scholar 

  9. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes, Nature 387, 569–572.

    Article  CAS  PubMed  Google Scholar 

  10. Brockman, H. L. (1994) Dipole potential of lipid membranes. Chem. Phys. Lipids 73, 57–79.

    Article  CAS  PubMed  Google Scholar 

  11. Momsen, W. E., Smaby, J. M., and Brockman, H. L. (1990) The suitability of nichrome for measurement of gas-liquid interfacial tension by the Wilhelmy method. J. Colloid Interface Sci. 135, 547–552.

    Article  CAS  Google Scholar 

  12. Smaby, J. M. and Brockman, H. L. (1990) Surface dipole moments of lipids at the argon-water interface: Similarities among glycerol-ester-based lipids. Biophys. J. 58, 195–204.

    Article  CAS  PubMed  Google Scholar 

  13. Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468.

    CAS  PubMed  Google Scholar 

  14. Kaganer, V. M., Möwald, H., and Dutta, P. (1999) Structural and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71, 779–819.

    Article  CAS  Google Scholar 

  15. Leathes, J. B. (1925) Role of fats in vital phenomena. Lancet 208, 853–856.

    Article  Google Scholar 

  16. Phillips, M. C. (1972) The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. Prog. Surf. Membr. Sci. 5, 139–221.

    CAS  Google Scholar 

  17. Smaby, J. M., Brockman, H. L., and Brown, R. E. (1994) Cholesterol’s interfacial interactions with sphingomyelins and phosphatidylcholines: Hydrocarbon chain structure determines the magnitude of condensation. Biochemistry 31, 9135–9142.

    Article  Google Scholar 

  18. Smaby, J. M., Momsen, M., Kulkarni, V. S., and Brown, R. E. (1996) Cholesterolinduced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry 35, 5696–5704.

    Article  CAS  PubMed  Google Scholar 

  19. Smaby, J. M., Momsen, M. M., Brockman, H. L., and Brown, R. E. (1997) Phosphatidyl-choline acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys. J. 73, 1492–1505.

    Article  CAS  PubMed  Google Scholar 

  20. Ali, S., Smaby, J. M., Brockman, H. L., and Brown, R. E. (1994) Cholesterol’s interfacial interactions with galactosylceramides. Biochemistry 33, 2900–2906.

    Article  CAS  PubMed  Google Scholar 

  21. Li, X.-M., Momsen, M. M., Smaby, J. M., Brockman, H. L., and Brown, R. E. (2003) Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophys. J. 85, 3788–3801.

    Article  CAS  PubMed  Google Scholar 

  22. Evans, E. and Needham, D. (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91, 4219–4228.

    Article  CAS  Google Scholar 

  23. Needham, D. (1995) Cohesion and permeability of lipid bilayer vesicles in Permeability and Stability of Lipid Bilayers, (Disalvo, E. A. and Simon, S. A. eds.), CRC Press, Boca Raton, FL, pp. 49–76.

    Google Scholar 

  24. Davies, J. T. and Rideal, E. K. (1963) Interfacial Phenomena, 2nd ed., Academic Press, New York, pp. 265.

    Google Scholar 

  25. Behroozi, F. (1996) Theory of elasticity in two dimensions and its application to Langmuir-Blodgett films. Langmuir 12, 2289–2291.

    Article  CAS  Google Scholar 

  26. Smaby, J. M., Kulkarni, V. S., Momsen, M., and Brown, R. E. (1996) The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys. J. 70, 868–877.

    Article  CAS  PubMed  Google Scholar 

  27. Li, X.-M., Momsen, M. M., Brockman, H. L., and Brown, R. E. (2002) Lactosylceramide: Effect of acyl chain structure on phase behavior and molecular packing. Biophys. J. 83, 1535–1546.

    Article  CAS  PubMed  Google Scholar 

  28. Li, X.-M., Momsen, M. M., Smaby, J. M., Brockman, H. L., and Brown, R. E. (2001) Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins, Biochemistry 40, 5954–5963.

    Article  CAS  PubMed  Google Scholar 

  29. Zhai, X., Li, X.-M., Momsen, M. M., Brockman, H. L., and Brown, R. E. (2006) Lactosylceramide: Lateral interactions with cholesterol. Biophys. J. 91, 2490–2500.

    Article  CAS  PubMed  Google Scholar 

  30. Allende, D., Vidal, A., and McIntosh, T. J. (2004) Jumping to rafts: Gatekeeper role of bilayer elasticity. Trends Biochem. Sci. 29, 325–330.

    Article  CAS  PubMed  Google Scholar 

  31. Ali, S., Brockman, H. L., and Brown, R. E. (1991) Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: Effect of unsaturation in the galactosylceramide acyl chain. Biochemistry 30, 11,198–11,205.

    Article  CAS  PubMed  Google Scholar 

  32. Smaby, J. M. and Brockman, H. L. (1992) Characterization of lipid miscibility in liquid-expanded monolayers at the gas-liquid interface. Langmuir 8, 563–570.

    Article  CAS  Google Scholar 

  33. Smaby, J. M. and Brockman, H. L. (1991) A simple method for estimating surfactant impurities in solvents and subphases used for monolayer studies. Chem. Phys. Lipids 58, 249–252.

    Article  CAS  PubMed  Google Scholar 

  34. Rye, R. R. (1990) Electron irradiation of poly(tetrafluoroethylene): Effect on adhesion and comparison with X-rays. Langmuir 6, 338–344.

    Article  CAS  Google Scholar 

  35. Kulkarni, V. S. and Brown, R. E. (1994) Interactions of phospholipid bilayer vesicles with monomolecular films at the air-water interface. Thin Solid Films 244, 869–873.

    Article  CAS  Google Scholar 

  36. Constantino, C. J. L., Dhanabalan, A., and Oliveira, O. N., Jr. (1999) Experimental artifacts in the surface pressure measurement for lignin monolayers in Langmuir troughs. Rev. Sci. Instr. 70, 3674–3680.

    Article  CAS  Google Scholar 

  37. Brockman, H. L., Smaby, J. M., and Jarvis, D. E. (1984) Automation of surface cleaning and sample addition for surface balances. J. Phys. E 17, 351–353.

    Article  CAS  Google Scholar 

  38. Maggio, B., Carrer, D. C., Fanani, M. L., Oliveira, R. G., and Rosetti, C. M. (2004) Interfacial behavior of glycosphingolipids and chemically related sphingolipids. Curr. Opin. Colloid Interface Sci. 8, 448–458.

    Article  CAS  Google Scholar 

  39. Marsh, D. (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183–223.

    CAS  PubMed  Google Scholar 

  40. Brockman, H. L., Momsen, M. M., Brown, R. E., et al. (2004) The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys. J. 87, 1722–1731.

    Article  CAS  PubMed  Google Scholar 

  41. Petty, M. C. (1996) Langmuir-Blodgett Films: An Introduction. Cambridge University Press.

    Google Scholar 

  42. Sackmann, E. (1996) Supported membranes: Scientific and practical approaches. Science 271, 43–48.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan, C., Furlong, J., Burgos, P., and Johnston, L. J. (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J. 82, 2526–2535.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, C. and Johnston, L. J. (2001) Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys. J. 81, 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  45. Von Tscharner, V. and McConnell, H. M. (1981) An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies. Biophys. J. 36, 409–419.

    Article  Google Scholar 

  46. Weis, R. M. and McConnell, H. M. (1984) Two-dimensional chiral crystals of phospholipid. Nature (London) 310, 47–49.

    Article  CAS  Google Scholar 

  47. Veatch, S. L. and Keller, S. L. (2002) Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101-1–268101-4.

    Article  Google Scholar 

  48. Radhakrishnan, A. and McConnell, H. M. (2002) Critical points in charged membranes containing cholesterol. Proc. Natl. Acad. Sci. USA 99, 13,391–13,396.

    Article  CAS  PubMed  Google Scholar 

  49. Stottrup, B. L., Stevens, D. S., and Keller, S. L. (2005) Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers and application to bilayer systems. Biophys. J. 88, 269–276.

    Article  CAS  PubMed  Google Scholar 

  50. Dahim, M., Mizuno, N. K., Li, X.-M., Momsen, W. E., Momsen, M. M., and Brockman, H. L. (2002) Physical and photophysical characterization of a BODIPY phosphatidylcholine as a membrane probe. Biophys J. 83, 1511–1524.

    Article  CAS  PubMed  Google Scholar 

  51. Momsen, W. E., Mizuno, N. K., Lowe, M. E., and Brockman, H. L. (2005) Realtime measurement of solute partitioning to lipid monolayers. Anal. Biochem. 346, 139–149.

    Article  CAS  PubMed  Google Scholar 

  52. Hoang, K. C., Malakhov, D., Momsen, W. E., and Brockman, H. L. (2006) Open, microfluidic flow cell for studies of interfacial processes at gas-liquid interfaces. Anal. Chem. 78, 1657–1664.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brown, R.E., Brockman, H.L. (2007). Using Monomolecular Films to Characterize Lipid Lateral Interactions. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics