Skip to main content

Detecting Ordered Domain Formation (Lipid Rafts) in Model Membranes Using Tempo

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Short-range fluorescence quenching has proven to be an effective method to detect the presence of coexisting ordered and disordered state lipid domains in model membranes. In this approach a fluorescent group and fluorescence-quenching molecule are incorporated into the lipid bilayer of interest. In a typical experiment, the fluorophore chosen partitions into ordered domains to a significant degree, whereas the quencher partitions more favorably into disordered domains. Thus, in the presence of lipid mixtures forming coexisting ordered and disordered domains, fluorophore and quencher segregate so that fluorescence intensity is much stronger than in homogeneous lipid bilayers lacking separate domains. The small nitroxide-labeled molecule tempo (2,2,6,6 tetramethylpiperidine-1-oxyl) is a useful quencher for such experiments. Protocols for using tempo to detect ordered domains and ordered domain thermal stability are described. The advantages and disadvantages of use of tempo as opposed to nitroxide-labeled lipids are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, D. A. and London, E. (1998) Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114.

    Article  CAS  PubMed  Google Scholar 

  2. Brown, D. A. and London, E. (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17,221–17,224.

    Article  CAS  PubMed  Google Scholar 

  3. Edidin, M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 11, 492–496.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, R. G. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825.

    Article  CAS  PubMed  Google Scholar 

  5. Grassme, H., Jendrossek, V., Riehle, A., et al. (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330.

    Article  CAS  PubMed  Google Scholar 

  6. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12, 480–486.

    Article  CAS  PubMed  Google Scholar 

  7. Fastenberg, M. E., Shogomori, H., Xu, X., Brown, D. A., and London, E. (2003) Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry 42, 12,376–12,390.

    Article  CAS  PubMed  Google Scholar 

  8. Abrams, F. S. and London, E. (1992) Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry 31, 5312–5322.

    Article  CAS  PubMed  Google Scholar 

  9. Florine-Casteel, K. and Feigenson, G. W. (1988) On the use of partition coefficients to characterize the distribution of fluorescent membrane probes between coexisting gel and fluid lipid phase: an analysis of the partition behavior of 1,6-diphenyl-1,3,5-hexatriene. Biochim. Biophys. Acta 941, 102–106.

    Article  CAS  PubMed  Google Scholar 

  10. Lentz, B. R., Barenholz, Y., and Thompson, T. E. (1976) Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry 15, 4529–4537.

    Article  CAS  PubMed  Google Scholar 

  11. London, E. and Feigenson, G. W. (1981) Fluorescence Quenching in Model Membranes. An analysis of the local phospholipid environments of diphenylhexatriene and gramicidin A′. Biochim. Biophys. Acta 649, 89–97.

    Article  CAS  Google Scholar 

  12. Florine, K. I. and Feigenson, G. W. (1987) Influence of the calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserinephosphatidylcholine multilamellar vesicles. Biochemistry 26, 1757–1768.

    Article  CAS  PubMed  Google Scholar 

  13. Megha, and London, E. (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10,004.

    CAS  PubMed  Google Scholar 

  14. Ahmed, S. N., Brown, D. A., and London, E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergentinsoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10,944–10,953.

    Article  CAS  PubMed  Google Scholar 

  15. London, E., Brown, D. A., and Xu, X. (2000) Fluorescence quenching assay of sphingolipid/phospholipid phase separation in model membranes. Methods Enzymol. 312, 272–290.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., and London, E. (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J. Biol. Chem. 276, 33,540–33,546.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J., Megha, and London, E. (2004) Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry 43, 1010–1018.

    Article  CAS  PubMed  Google Scholar 

  18. Megha, Bakht, O., and London, E. (2006) Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees: Implications for the Bloch hypothesis and sterol biosynthesis disorders. J. Biol. Chem. 281, 21,903–21,913.

    Article  CAS  PubMed  Google Scholar 

  19. Koynova, R. and Caffrey, M. (1995) Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta 1255, 213–236.

    PubMed  Google Scholar 

  20. Kremer, J. M., Esker, M. W., Pathmamanoharan, C., and Wiersema, P. H. (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16, 3932–3935.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, T. Y. and Silvius, J. R. (2003) Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378.

    Article  CAS  PubMed  Google Scholar 

  22. Coste, V., Puff, N., Lockau, D., Quinn, P. J., and Angelova, M. I. (2006) Raft-like domain formation in large unilamellar vesicles probed by the fluorescent phospholipid analogue, C12NBD-PC. Biochim. Biophys. Acta 1758, 460–467.

    Article  CAS  PubMed  Google Scholar 

  23. Beck, A., Heissler, D., and Duportail, G. (1993) Influence of the length of the spacer on the partitioning properties of amphiphilic fluorescent membrane probes. Chem. Phys. Lipids 66, 135–142.

    Article  CAS  PubMed  Google Scholar 

  24. Kaiser, R. D. and London, E. (1998) Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37, 8180–8190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bakht, O., London, E. (2007). Detecting Ordered Domain Formation (Lipid Rafts) in Model Membranes Using Tempo. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics