Skip to main content
Book cover

Lipid Rafts pp 221–230Cite as

X-Ray Diffraction to Determine the Thickness of Raft and Nonraft Bilayers

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Low-angle X-ray diffraction is a powerful method to analyze the structure of membrane bilayers. Specifically, the technique can be used to determine accurately the thickness of fully hydrated bilayers. Herein details are presented showing how this technique can measure the difference in thickness of bilayers in detergent-resistant membranes and detergent-soluble membranes extracted from model systems known to contain both raft and nonraft domains. The observed thickness difference may be critical in the sorting of transmembrane proteins between raft and nonraft bilayers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bretscher, M. S. and Munro, S. (1993) Cholesterol and the Golgi apparatus. Science 261, 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  2. Mouritsen, O. G. and Bloom, M. (1984) Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153.

    Article  CAS  PubMed  Google Scholar 

  3. Killian, J. A. (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta 1376, 401–416.

    CAS  PubMed  Google Scholar 

  4. Dumas, F., Lebrun, M. C., and Tocanne, J. F. (1999) Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett. 458, 271–277.

    Article  CAS  PubMed  Google Scholar 

  5. Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L., and Huang, H. W. (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys. J. 76, 937–945.

    Article  CAS  PubMed  Google Scholar 

  6. Monne, M. and von Heijne, G. (2001) Effects of ‘hydrophobic mismatch’ on the location of transmembrane helices in the ER membrane. FEBS Lett. 496, 96–100.

    Article  CAS  PubMed  Google Scholar 

  7. Petrache, H. I., Zuckerman, D. M., Sachs, J. N., Killian, J. A., Koeppe, R. E., and Woolf, T. B. (2002) Hydrophobic matching mechanism investigated by molecular dynamics simulations. Langmuir 18, 1340–1351.

    Article  CAS  Google Scholar 

  8. Ridder, A. N. J. A., van de Hoef, W., Stam, J., Kuhn, A., de Kruijff, B., and Killian, J. A. (2002) Importance of hydrophobic matching for spontaneous insertion of a single-spanning membrane protein. Biochemistry 41, 4946–4952.

    Article  CAS  PubMed  Google Scholar 

  9. Caputo, G. A. and London, E. (2003) Cumulative Effects of Amino Acid Substitutions and Hydrophobic Mismatch upon the Transmembrane Stability and Conformation of Hydrophobic alpha-Helices. Biochemistry 42, 3275–3285.

    Article  CAS  PubMed  Google Scholar 

  10. Hwang, T. C., Koeppe, R. E., II., and Andersen, O. S. (2003) Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13,646–13,658.

    Article  CAS  PubMed  Google Scholar 

  11. van Duyl, B. Y., Rijkers, D. T., de Kruijff, B., and Killian, J. A. (2002) Influence of hydrophobic mismatch and palmitoylation on the association of trans-membrane alpha-helical peptides with detergent-resistant membranes. FEBS Lett. 523, 79–84.

    Article  PubMed  Google Scholar 

  12. McIntosh, T. J., Vidal, A., and Simon, S. A. (2003) Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys. J. 85, 1656–1666.

    Article  CAS  PubMed  Google Scholar 

  13. Brown, D. A. and London, E. (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17,221–17,224.

    Article  CAS  PubMed  Google Scholar 

  14. Simons, K. and Ikonen, E. (2000) How cells handle cholesterol. Science 290, 1721–1726.

    Article  CAS  PubMed  Google Scholar 

  15. Lundbaek, J. A., Andersen, O. S., Werge, T., and Nielsen, C. (2003) Cholesterol-Induced Protein Sorting: An Analysis of Energetic Feasibility. Biophys. J. 84, 2080–2089.

    Article  CAS  PubMed  Google Scholar 

  16. Gandhavadi, M., Allende, D., Vidal, A., Simon, S. A., and McIntosh, T. J. (2002) Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82, 1469–1482.

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., et al. (2001) Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  18. Samsonov, A. V., Mihalyov, I., and Cohen, F. S. (2001) Characterization of cholesterolsphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500.

    Article  CAS  PubMed  Google Scholar 

  19. Veatch, S. L. and Keller, S. L. (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083.

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed, S. N., Brown, D. A., and London, E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10,944–10,953.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, P. S., Jr., Toribara, T. Y., and Warner, H. (1956) Microdetermination of phosphorous. Anal. Chem. 28, 1756–1758.

    Article  CAS  Google Scholar 

  22. Kates, M. (1972) Techniques of Lipidology. Isolation, Analysis and Identification of Lipids. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  23. McIntosh, T. J., Magid, A. D., and Simon, S. A. (1987) Steric repulsion between phosphatidylcholine bilayers. Biochemistry 26, 7325–7332.

    Article  CAS  PubMed  Google Scholar 

  24. McIntosh, T. J., Magid, A. D., and Simon, S. A. (1989) Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry 28, 17–25.

    Article  CAS  PubMed  Google Scholar 

  25. Parsegian, V. A., Fuller, N., and Rand, R. P. (1979) Measured work of deformation and repulsion of lecithin bilayers. Proc. Natl. Acad. Sci. USA 76, 2750–2754.

    Article  CAS  PubMed  Google Scholar 

  26. McIntosh, T. J. and Simon, S. A. (1986) The hydration force and bilayer deformation: a reevaluation. Biochemistry 25, 4058–4066.

    Article  CAS  PubMed  Google Scholar 

  27. Shannon, C. E. (1949) Communication in the presence of noise. Proc. Inst. Radio Eng. NY 37, 10–21.

    Google Scholar 

  28. McIntosh, T. J. and Holloway, P. W. (1987) Determination of the depth of bromine atoms in bilayers formed from bromolipid probes. Biochemistry 26, 1783–1788.

    Article  CAS  PubMed  Google Scholar 

  29. McIntosh, T. J., Simon, S. A., Ellington, J. C., and Porter, N. A. (1984) A new structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry 23, 4038–4044.

    Article  CAS  PubMed  Google Scholar 

  30. McIntosh, T. J. (1978) The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim. Biophys. Acta 513, 43–58.

    Article  CAS  PubMed  Google Scholar 

  31. McIntosh, T. J., Simon, S. A., Needham, D., and Huang, C.-H. (1992) Interbilayer interactions between sphingomyelin and sphingomyelin:cholesterol bilayers. Biochemistry 31, 2020–2024.

    Article  CAS  PubMed  Google Scholar 

  32. McIntosh, T. J., Simon, S. A., Needham, D., and Huang, C.-H. (1992) Structure and cohesive properties of sphingomyelin:cholesterol bilayers. Biochemistry 31, 2012–2020.

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen, C., Goulian, M., and Andersen, O. S. (1998) Energetics of inclusioninduced bilayer deformations. Biophys. J. 74, 1966–1983.

    Article  CAS  PubMed  Google Scholar 

  34. Munro, S. (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14, 4695–4704.

    CAS  PubMed  Google Scholar 

  35. Allende, D., Simon, S. A., and McIntosh, T. J. (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys. J. 88, 1828–1837.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

McIntosh, T.J. (2007). X-Ray Diffraction to Determine the Thickness of Raft and Nonraft Bilayers. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics