Skip to main content

Plasmon-Waveguide Resonance Spectroscopy Studies of Lateral Segregation in Solid-Supported Proteolipid Bilayers

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Plasmon-waveguide resonance (PWR) spectroscopy is a high-sensitivity optical method for characterizing thin films immobilized onto the outer surface of a glass prism coated with thin films of a metal (e.g., silver) and a dielectric (e.g., silica). Resonance excitation by a polarized continuous wave (CW) laser above the critical angle for total internal reflection generates plasmon and waveguide modes, whose evanescent electromagnetic fields are localized on the outer surface and interact with the immobilized sample (in the present case a proteolipid bilayer). Plots of reflected light intensity vs the incident angle of the exciting light constitute a PWR spectrum, whose properties are determined by the refractive index (n), the thickness (t), and the optical extinction at the exciting wavelength (k) of the sample. Plasmon excitation can occur using light polarized both perpendicular (p) and parallel (s) to the plane of the resonator surface, allowing characterization of the structural properties of uniaxially oriented proteolipid films deposited on the surface. As will be demonstrated in what follows, PWR spectroscopy provides a powerful tool for directly observing in real-time microdomain formation (rafts) in such bilayers owing to lateral segregation of both lipids and proteins. In favorable cases, protein trafficking can also be monitored. Spectral simulation using Maxwell’s equations allows these raft domains to be characterized in terms of their mass densities and thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pike, L. J. (2004) Lipid rafts: heterogeneity on the high seas. Biochem. J. 378, 281–292.

    Article  CAS  PubMed  Google Scholar 

  2. Simons, K. and Vaz, W. L. C. (2004) Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    Article  CAS  PubMed  Google Scholar 

  3. Munro, S. (2003) Lipid rafts: elusive or illusive? Cell 115, 377–388.

    Article  CAS  PubMed  Google Scholar 

  4. Saslowsky, D. E., Lawrence, J., Ren, X., Brown, D. A., Henderson, R. M., and Edwards, J. M. (2002) Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J. Biol. Chem. 277, 26,966–26,970.

    Article  CAS  PubMed  Google Scholar 

  5. Milhiet, P., Vie, V., Giocondi, M., and Le Grimellec, C. (2001) AFM characterization of model rafts in supported bilayers. Single Mol. 2, 119–121.

    Article  Google Scholar 

  6. Bacia, K., Scherfeld, D., Kahya, N., and Schwille, P. (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Salamon, Z., Macleod, A. H., and Tollin, G. (1997) Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties. Biophys. J. 73, 2791–2797.

    Article  CAS  PubMed  Google Scholar 

  8. Salamon, Z., Macleod, A. H., and Tollin, G. (1999) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties. US Patent No. 5,991,488.

    Google Scholar 

  9. Salamon, Z. and Tollin, G. (2001) Coupled plasmon spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges. US Patent No. 6,330,387 B1.

    Google Scholar 

  10. Salamon, Z. and Tollin, G. (2002) Coupled plasmon spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges. US Patent No. 6,421,128 B1.

    Google Scholar 

  11. Salamon, Z., Wang, Y., Tollin, G., and Macleod, H. A. (1994) Assembly and molecular organization of self-assembled lipid bilayers on solid substrates monitored by surface plasmon resonance spectroscopy. Biochim. Biophys. Acta 1195, 267–275.

    Article  PubMed  Google Scholar 

  12. Salamon, Z. and Tollin, G. (2001) Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophys. J. 80, 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  13. Salamon, Z., Schmidt, R. A., Tollin, G., and Macleod, H. A. (1996) Reusable biocompatible interface for immobilization of materials on a solid support. US Patent No. 5,521,702.

    Google Scholar 

  14. Salamon, Z. and Tollin, G. (1999) Surface plasmon resonance, theory, in Encyclopedia of Spectroscopy and Spectrometry, vol. 3, (Lindon, J. C., Tranter, G. E., and Holmes, J. L., eds.), Academic Press, NY, pp. 2311–2319.

    Google Scholar 

  15. Salamon, Z. and Tollin, G. (1999) Surface plasmon resonance, applications, in Encyclopedia of Spectroscopy and Spectrometry, vol. 3, (Lindon, J. C., Tranter, G. E., and Holmes, J. L., eds.), Academic Press, NY, pp. 2294–2302.

    Google Scholar 

  16. Alves, I. D., Ciano, K. A., Boguslavski, V., et al. (2004) Selectivity, cooperativity and reciprocity in the interactions between δ-opioid receptor, its ligands, and G-proteins. J. Biol. Chem. 279, 44,673–44,682.

    Article  CAS  PubMed  Google Scholar 

  17. Salamon, Z., Brown, M. F., and Tollin, G. (1999) Plasmon resonance spectroscopy: probing interactions within membranes. Trends Biochem. Sci. 24, 213–219.

    Article  CAS  PubMed  Google Scholar 

  18. Salamon, Z. and Tollin, G. (2001) Plasmon resonance spectroscopy: probing molecular interactions at surfaces and interfaces. Spectroscopy 15, 161–175.

    CAS  Google Scholar 

  19. Salamon, Z., Huang, D., Cramer, W. A., and Tollin, G. (1998) Coupled plasmonwaveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes. Biophys. J. 75, 1874–1885.

    Article  CAS  PubMed  Google Scholar 

  20. Salamon, Z., Cowell, S., Varga, E., Yamamura, H. I., Hruby, V. J., and Tollin, G. (2000) Plasmon resonance studies of agonist/antagonist binding to the human δ-opioid receptor: new structural insights into receptor-ligand interactions. Biophys. J. 79, 2463–2474.

    Article  CAS  PubMed  Google Scholar 

  21. Cuypers, P. A., Corsel, J. W., Janssen, M. P., Kop, J. M. M., Hermens, W. T., and Hemker, H. C. (1983) The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry. J. Biol. Chem. 258, 2426–2431.

    CAS  PubMed  Google Scholar 

  22. Salamon, Z., Devanathan, S., Alves, I. D., and Tollin, G. (2005) Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (rafts) in solid-supported bilayers. J. Biol. Chem. 280, 11,175–11,184.

    Article  CAS  PubMed  Google Scholar 

  23. Alves, I. D., Salamon, Z., Hruby, V. J., and Tollin, G. (2005) Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry 44, 9168–9178.

    Article  CAS  PubMed  Google Scholar 

  24. Devanathan, S., Salamon, Z., Lindblom, G., Gröbner, G., and Tollin, G. (2006) Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Aβ1–40 peptide in solid-supported lipid bilayers. FEBS J. 273, 1389–1402.

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence, J. C., Saslowsky, D. E., Edwardson, J. M., and Henderson, R. M. (2003) Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Biophys. J. 84, 1827–1832.

    Article  CAS  PubMed  Google Scholar 

  26. Salamon, Z. and Tollin, G. (2004) Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function. Biophys. J. 86, 2508–2516.

    Article  CAS  PubMed  Google Scholar 

  27. Alves, I. D., Varga, E., Salamon, Z., Yamamura, H. I., Tollin, G., and Hruby, V. J. (2003) Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectroscopy. J. Biol. Chem. 278, 48,890–48,897.

    Article  CAS  PubMed  Google Scholar 

  28. Milhiet, P. E., Giocondi, M.-C., and Le Grimellec, C. (2002) Cholesterol is not crucial for existence of microdomains in kidney brush-border membrane models. J. Biol. Chem. 277, 875–878.

    Article  CAS  PubMed  Google Scholar 

  29. Muresan, A. S., Diamant, H., and Lee, K. Y. C. (2001) Effect of temperature and composition on the formation of nanoscale components in phospholipid membranes. J. Am. Chem. Soc. 123, 6951–6952.

    Article  CAS  PubMed  Google Scholar 

  30. Salamon, Z., Macleod, H. A., and Tollin, G. (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochim. Biophys. Acta 1331, 117–129.

    CAS  PubMed  Google Scholar 

  31. Salamon, Z., Macleod, H. A., and Tollin, G. (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim. Biophys. Acta 1331, 131–152.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Salamon, Z., Devanathan, S., Tollin, G. (2007). Plasmon-Waveguide Resonance Spectroscopy Studies of Lateral Segregation in Solid-Supported Proteolipid Bilayers. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics