Skip to main content

In Vivo Tomographic Imaging Studies of Neurodegeneration and Neuroprotection: A Review

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 399))

Abstract

Noninvasive tomographic imaging methods including positron emission tomography (PET) and single photon emission computed tomography (SPECT) are extremely sensitive and are capable of measuring biochemical processes that occur at concentrations in the nanomolar range. Inherent to neurodegenerative processes is neuronal loss. Thus, PET or SPECT monitoring of biochemical processes altered by neuronal loss (changes in neurotransmitter turnover, alterations in receptor, transporter or enzyme concentrations) can provide unique information not attainable by other methods. Such imaging techniques can also be used to longtitudinally monitor the effects of neuroprotective treatments. This review highlights current imaging probes used to evaluate patients with specific neurodegenerative disorders (e.g., Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Chorea), including those that image receptors of the dopaminergic, cholinergic and glutamatergic systems. Areas of future research focus are also defined. It is clear that monitoring the progression of neurodegenerative disorders and the impact of neuroprotective treatments are two different but related goals for which noninvasive imaging via PET and SPECT methods plays a powerful and unique role.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kessler, R. M. (2003) Imaging methods for evaluating brain function in man. Neurobiol Aging 24Suppl 1, S21–35.

    Article  CAS  PubMed  Google Scholar 

  2. Slifstein, M. and Laruelle, M. (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28, 595–608.

    Article  CAS  PubMed  Google Scholar 

  3. Lammertsma, A. (2001) PET/SPECT: functional imaging beyond flow Vision Res 41, 1277–81.

    Article  CAS  PubMed  Google Scholar 

  4. Talbot, P. and Laruelle, M. (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12, 503–11.

    Article  CAS  PubMed  Google Scholar 

  5. Kegeles, L. and Mann, J. (1997) In vivo imaging of neurotransmitter systems using radiolabeled receptor ligands. Neuropsychopharmacology 17, 293–307.

    Article  CAS  PubMed  Google Scholar 

  6. Halldin, C., Gulyas, B., Langer, O., and Farde, L. (2001) Brain radioligands-state of the art and new trends. Q J Nucl Med 45, 139–52.

    CAS  PubMed  Google Scholar 

  7. Piccini, P. (2004) Neurodegenerative movement disorders: the contribution of functional imaging. Curr Opin Neurol 17, 459–66.

    Article  PubMed  Google Scholar 

  8. Costa, D., Pilowsky, L., and Ell, P. (1999) Nuclear medicine in neurology and psychiatry. Lancet 354, 1107–11.

    Article  CAS  PubMed  Google Scholar 

  9. Blake, P., Johnson, B., and VanMeter, J. W. (2003) Positron emission tomography (PET) and single photon emission computed tomography (SPECT): clinical applications. J Neuroophthalmol 23, 34–41.

    PubMed  Google Scholar 

  10. Mandel, S., Grunblatt, E., Riederer, P., Gerlach, M., Levites, Y., and Youdim, M. B. (2003) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17, 729–62.

    Article  CAS  PubMed  Google Scholar 

  11. Kostrzewa, R. M. and Segura-Aguilar, J. (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. Neurotox Res 5, 375–83.

    Article  PubMed  Google Scholar 

  12. Youdim, M. B. and Buccafusco, J. J. (2005) CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 112, 519–37.

    Article  CAS  PubMed  Google Scholar 

  13. Riederer, P., Gille, G., Muller, T., Przuntek, H., Reichmann, H., Riess, O., Schwartz, A., Schwarz, J., and Vogt, T. (2002) Practical importance of neuroprotection in Parkinson’s disease. J Neurol 249, 53–6.

    Article  Google Scholar 

  14. Leenders, K. L. and Oertel, W. H. (2001) Parkinson’s disease: clinical signs and symptoms, neural mechanisms, positron emission tomography, and therapeutic interventions. Neural Plast 8, 99–110.

    Article  CAS  PubMed  Google Scholar 

  15. Hauser, R. A. and Zesiewicz, T. A. (1999) Management of early Parkinson’s disease. Med Clin North Am 83, 393–414.

    Article  CAS  PubMed  Google Scholar 

  16. Riederer, P., Sian, J., and Gerlach, M. (2000) Is there neuroprotection in Parkinson syndrome? J Neurol 247, 8–11.

    Google Scholar 

  17. Stocchi, F. and Olanow, C. W. (2003) Neuroprotection in Parkinson’s disease: clinical trials. Ann Neurol 53Suppl 3, S87–97.

    Article  CAS  PubMed  Google Scholar 

  18. Brooks, D. J., Frey, K. A., Marek, K. L., Oakes, D., Paty, D., Prentice, R., Shults, C. W., and Stoessl, A. J. (2003) Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 184Suppl 1, S68–79.

    Article  CAS  PubMed  Google Scholar 

  19. Morrish, P. K. (2003) How valid is dopamine transporter imaging as a surrogate marker in research trials in Parkinson’s disease? Mov Disord 18Suppl 7, S63–70.

    Article  PubMed  Google Scholar 

  20. Brooks, D. J. (2000) Monitoring neuroprotection and restorative therapies in Parkinson’s diseasse with PET. J Neural Transm Suppl 60, 125–37.

    PubMed  Google Scholar 

  21. Guilloteau, D. and Chalon, S. (2005) PET and SPECT exploration of central monoaminergic transporters for the development of new drugs and treatments in brain disorders. Curr Pharm Des 11, 3237–45.

    Article  CAS  PubMed  Google Scholar 

  22. Brooks, D. J. (2003) Imaging end points for monitoring neuroprotection in Parkinson’s disease. Ann Neurol 53Suppl 3, S110–8.

    Article  CAS  PubMed  Google Scholar 

  23. Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., and Brooks, D. J. (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64, 314–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hilker, R., Schweitzer, K., Coburger, S., Ghaemi, M., Weisenbach, S., Jacobs, A. H., Rudolf, J., Herholz, K., and Heiss, W. D. (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62, 378–82.

    Article  PubMed  Google Scholar 

  25. Heiss, W. D. and Hilker, R. (2004) The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson’s disease. Eur J Neurol 11, 5–12.

    Article  PubMed  Google Scholar 

  26. Rakshi, J. S., Pavese, N., Uema, T., Ito, K., Morrish, P. K., Bailey, D. L., and Brooks, D. J. (2002) A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-dopa: an 18F-dopa PET study. J Neural Transm 109, 1433–43.

    Article  CAS  PubMed  Google Scholar 

  27. Bohnen, N. I. and Frey, K. A. (2003) The role of positron emission tomography imaging in movement disorders. Neuroimaging Clin N Am 13,791–803.

    Article  PubMed  Google Scholar 

  28. Booij, J., Tissingh, G., Winogrodzka, A., and van Royen, E. A. (1999) Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 26, 171–82.

    Article  CAS  PubMed  Google Scholar 

  29. Carpinelli, A., Matarrese, M., Moresco, R., Simonelli, P., Todde, S., Magni, F., Galli, K. M., and Fazio, F. (2001) Radiosynthesis of [123I]betaCIT, a selective ligand for the study of the dopaminergic and serotoninergic systems in human brain. Appl Radiat Isot 54, 93–5.

    Article  CAS  PubMed  Google Scholar 

  30. Staley, J., Krishnan-Sarin, S., Zoghbi, S., Tamagnan, G., Fujita, M., Seibyl, J., Maciejewski, P., O’Malley, S., and Innis, R. (2001) Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 41, 275–84.

    Article  CAS  PubMed  Google Scholar 

  31. Wenning, G., Donnemiller, E., Granata, R., Riccabona, G., and Poewe, W. (1998) 123I-beta-CIT and 123I-IBZM-SPECT scanning in levodopa-naive Parkinson’s disease. Mov Disord 13, 438–45.

    Article  CAS  PubMed  Google Scholar 

  32. Berding, G., Brucke, T., Odin, P., Brooks, D. J., Kolbe, H., Gielow, P., Harke, H., Knoop, B. O., Dengler, R., and Knapp, W. H. (2003) [123I]beta-CIT SPECT imaging of dopamine and serotonin transporters in Parkinson’s disease and multiple system atrophy. Nucl Med 42, 31–8.

    CAS  Google Scholar 

  33. Berger, H., Cools, A., Horstink, M., Oyen, W., Verhoeven, E., and van der Werf, S. P. (2004) Striatal dopamine and learning strategy-an (123)I-FP-CIT SPECT study. Neuropsychologia 42, 1071–8.

    Article  PubMed  Google Scholar 

  34. Booij, J., Tissingh, G., Boer, G., Speelman, J., Stoof, J., Janssen, A., Wolters, E., and van Royen, E. A. (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62, 133–40.

    Article  CAS  PubMed  Google Scholar 

  35. Lavalaye, J., Linszen, D., Booij, J., Dingemans, P., Reneman, L., Habraken, J., Gersons, B., and van Royen, E. A. (2001) Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res 47, 59–67.

    Article  CAS  PubMed  Google Scholar 

  36. Booij, J., Speelman, J. D., Horstink, M. W., and Wolters, E. C. (2001) The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med 28, 266–72.

    Article  CAS  PubMed  Google Scholar 

  37. Winogrodzka, A., Bergmans, P., Booij, J., van Royen, E. A., Janssen, A. G., and Wolters, E. C. (2003) [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J Neural Transm 108, 1011–9.

    Article  Google Scholar 

  38. Parkinson Study Group. (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287, 1653–61.

    Article  Google Scholar 

  39. Hall, H., Halldin, C., Guilloteau, D., Chalon, S., Emond, P., Besnard, J., Farde, L., and Sedvall, G. (1999) Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. Neuroimage 9, 108–16.

    Article  CAS  PubMed  Google Scholar 

  40. Kuikka, J., Baulieu, J., Hiltunen, J., Halldin, C., Bergstrom, K., Farde, L., Emond, P., Chalon, S., Yu, M., Nikula, T., Laitinen, T., Karhu, J., Tupala, E., Hallikainen, T., Kolehmainen, V., Mauclaire, L., Maziere, B., Tiihonen, J., and Guilloteau, D. (1998) Pharmacokinetics and dosimetry of iodine-123 labelled PE2I in humans, a radioligand for dopamine transporter imaging. Eur J Nucl Med 25, 531–4.

    Article  CAS  PubMed  Google Scholar 

  41. Choi, S., Kung, M., Plossl, K., Meegalla, S., and Kung, H. (1999) An improved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol 26, 461–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kung, M., Stevenson, D., Plossl, K., Meegalla, S., Beckwith, A., Essman, W., Mu, M., Lucki, I., and Kung, H. (1997) [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 24, 372–80.

    CAS  PubMed  Google Scholar 

  43. Van Laere, K., De Ceuninck. L., Dom, R., Van den Eynder, J., Vanbilloen, H., Cleynhens, J., Dupont, P., Bormans, G., Verbruggen, A., and Mortelmans, L. (2004) Dopamine transporter SPECT using fast kinetic ligands: 123I-FPbeta-CIT versus 99mTc-TRODAT-1. Eur J Nucl Med Mol Imaging 31, 1119–27.

    Article  PubMed  Google Scholar 

  44. Meegalla, S., Plossl, K., Kung, M., Stevenson, D., Mu, M., Kushner, S., Liable-Sands, L., Rheingold, A., and Kung, H. (1998) Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents. J Med Chem 41, 428–36.

    Article  CAS  PubMed  Google Scholar 

  45. Pan, T., Xie, W., Jankovic, J., and Le, W. (2005) Genetic analysis of parkin coregulated gene (PACRG) in patients with early-onset parkinsonism. Neurosci Lett 377, 106–9.

    Article  CAS  PubMed  Google Scholar 

  46. Stephenson, C., Bigliani, V., Jones, H., Mulligan, R., Acton, P., Visvikis, D., Ell, P., Kerwin, R., and Pilowsky, L. (2000) Striatal and extra-striatal D(2)/D(3) dopamine receptor occupancy by quetiapine in vivo. [(123)I]-epidepride single photon emission tomography (SPET) study. Br J Psychiatry 177, 408–15.

    Article  CAS  PubMed  Google Scholar 

  47. Black, K. J., Hershey, T., Hartlein, J. M., Carl, J. L., and Perlmutter, J. S. (2005) Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson’s disease. Neuropsychopharmacology 30, 590–601.

    Article  CAS  PubMed  Google Scholar 

  48. Prunier, C., Tranquart, F., Cottier, J., Giraudeau, B., Chalon, S., Guilloteau, D., De Toffol, B., Chossat, F., Autret, A., Besnard, J., and Baulieu, J. (2001) Quantitative analysis of striatal dopamine D2 receptors with 123 I-iodolisuride SPECT in degenerative extrapyramidal diseases. Nucl Med Commun 22, 1207–14.

    Article  CAS  PubMed  Google Scholar 

  49. Kornhuber, J., Brucke, T., Angelberger, P., Asenbaum, S., and Podreka, I. (1995) SPECT imaging of dopamine receptors with [123I]epidepride: characterization of uptake in the human brain. J Neural Transm Gen Sect 101, 95–103.

    Article  CAS  PubMed  Google Scholar 

  50. Pirker, W., Asenbaum, S., Wenger, S., Kornhuber, J., Angelberger, P., Deecke, L., Podreka, I., and Brucke, T. (1997) Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J Nucl Med 38, 1711–7.

    CAS  PubMed  Google Scholar 

  51. Cordes, M., Hierholzer, J., Schelosky, L., Schrag, A., Richter, W., Eichstadt, H., Schulze, P., Poewe, W., and Felix, R. (1996) Iodine-123-iodo-lisuride SPECT in Parkinson’s disease. J Nucl Med 37, 22–5.

    CAS  PubMed  Google Scholar 

  52. Votaw, J., Ansari, M., Mason, N., Schmidt, D., de Paulis, T., Holburn, G., Clanton, J., Votaw, D., Manning, R., and Kessler, R. (1995) Dosimetry of iodine-123-epidepride: a dopamine D2 receptor ligand. J Nucl Med 36, 1316–21.

    CAS  PubMed  Google Scholar 

  53. Chalon, S., Emond, P., Bodard, S., Vilar, M., Thiercelin, C., Besnard, J., and Guilloteau, D. (1999) Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson’s disease. Synapse 31, 134–9.

    Article  CAS  PubMed  Google Scholar 

  54. Pizzolato, G., Chierichetti, F., Rossato, A., Cagnin, A., Fabbri, M., Dam, M., Ferlin, G., and Battistin, L. (1995) Alterations of striatal dopamine D2 receptors contribute to deteriorated response to L-dopa in Parkinson’s disease: a [123I]-IBZM SPET study. J Neural Transm Suppl 45, 113–22.

    CAS  PubMed  Google Scholar 

  55. Knudsen, G. M., Karlsborg, M., Thomsen, G., Krabbe, K., Regeur, L., Nygaard, T., Videbaek, C., and Werdelin, L. (2004) Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 31, 1631–8.

    Article  CAS  PubMed  Google Scholar 

  56. Laruelle, M. and Huang, Y. (2001) Vulnerability of positron emission tomography radiotracers to endogenous competition. New insights. Q J Nucl Med 45, 124–38.

    CAS  PubMed  Google Scholar 

  57. Frey, K. A., Koeppe, R. A., and Kilbourn, M. R. (2001) Imaging the vesicular monoamine transporter. Adv Neurol 86, 237–47.

    CAS  PubMed  Google Scholar 

  58. Frey, K. A., Koeppe, R. A., Kilbourn, M. R., Vander Borght, T. M., Albin, R. L., Gilman, S., and Kuhl, D. E. (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40, 873–84.

    Article  CAS  PubMed  Google Scholar 

  59. Bohnen, N. I., Koeppe, R. A., Meyer, P., Ficaro, E., Wernette, K., Kilbourn, M. R., Kuhl, D. E., Frey, K. A., and Albin, R. L. (2000) Decreased striatal monoaminergic terminals in Huntington disease. Neurology 54, 1753–9.

    CAS  PubMed  Google Scholar 

  60. Miller, G. W., Erickson, J. D., Perez, J. T., Penland, S. N., Mash, D. C., Rye, D. B., and Levey, A. I. (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156,138–48.

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki, M., Desmond, T. J., Albin, R. L., and Frey, K. A. (2002) Striatal monoaminergic terminals in Lewy body and Alzheimer’s dementias. Ann Neurol 51, 767–71.

    Article  PubMed  Google Scholar 

  62. Suzuki, M., Desmond, T. J., Albin, R. L., and Frey, K. A. (2001) Vesicular neurotransmitter transporters in Huntington’s disease: initial observations and comparison with traditional synaptic markers. Synapse 41, 329–36.

    Article  CAS  PubMed  Google Scholar 

  63. Lehericy, S., Brandel, J. P., Hirsch, E. C., Anglade, P., Villares, J., Scherman, D., Duyckaerts, C., Javoy-Agid, F., and Agid, Y. (1994) Monoamine vesicular uptake sites in patients with Parkinson’s disease and Alzheimer’s disease, as measured by tritiated dihydrotetrabenazine autoradiography. Brain Res 659, 1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Aarsland, D., Sharp, S., and Ballard, C. (2005) Psychiatric and behavioral symptoms in Alzheimer’s disease and other dementias: etiology and management. Curr Neurol Neurosci Rep 5, 345–54.

    Article  PubMed  Google Scholar 

  65. Clader, J. W. and Wang, Y. (2005) Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 11, 3353–61.

    Article  CAS  PubMed  Google Scholar 

  66. Riepe, M. W. (2005) Cholinergic treatment: what are the early neuropathological targets? Eur J Neurol 3, 3–9.

    Article  Google Scholar 

  67. Longo, F. M. and Massa, S. M. (2004) Neuroprotective strategies in Alzheimer’s disease. NeuroRx 1, 117–27.

    Article  PubMed  Google Scholar 

  68. Yan, Z. and Feng, J. (2004) Alzheimer’s disease: interactions between cholinergic functions and beta-amyloid. Curr Alzheimer Res 1, 241–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bergstrom, K., Halldin, C., Savonen, A., Okubo, Y., Hiltunen, J., Nobuhara, K., Swahn, C., Karlsson, P., McPherson, D., Knapp, F., Larsson, S., Schnell, P., and Farde, L. (1999) Iodine-123 labelled Z-(R,R)-IQNP: a potential radioligand for visualization of M(1) and M(2) muscarinic acetylcholine receptors in Alzheimer’s disease. Eur J Nucl Med 26, 1482–5.

    Article  CAS  PubMed  Google Scholar 

  70. Knapp, F., McPherson, D., Luo, H., and Zeeburg, B. (1997) Radiolabeled ligands for imaging the muscarinic-cholinergic receptors of the heart and brain. Anticancer Res 17, 1559–72.

    CAS  PubMed  Google Scholar 

  71. Norbury, R., Travis, M., Erlandsson, K., Waddington, W., Owens, J., Pimlott, S., Ell, P., and Murphy, D. (2005) In vivo imaging of muscarinic receptors in the aging female brain with (R,R)[123I]-I-QNB and single photon emission tomography. Exp Gerontol 40, 137–45.

    Article  CAS  PubMed  Google Scholar 

  72. Sunderland, T., Esposito, G., Molchan, S. E., Coppola, R., Jones, D. W., Gorey, J., Little, J. T., Bahro, M., and Weinberger, D. R. (1995) Differential cholinergic regulation in Alzheimer’s patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology 121, 231–41.

    Article  CAS  PubMed  Google Scholar 

  73. Kemp, P. M., Holmes, C., Hoffmann, S., Wilkinson, S., Zivanovic, M., Thom, J., Bolt, L., Fleming, J., and Wilkinson, D. G. (2003) A randomised placebo controlled study to assess the effects of cholinergic treatment on muscarinic receptors in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74, 1567–70.

    Article  CAS  PubMed  Google Scholar 

  74. Nordberg, A. (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49, 200–10.

    Article  CAS  PubMed  Google Scholar 

  75. Saji, H., Ogawa, M., Ueda, M., Iida, Y., Magata, Y., Tominaga, A., Kawashima, H., Kitamura, Y., Nakagawa, M., Kiyono, Y., and Mukai, T. (2002) Evaluation of radioiodinated 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine as a ligand for SPECT investigations of brain nicotinic acetylcholine receptors. Ann Nucl Med 16,189–200.

    Article  CAS  PubMed  Google Scholar 

  76. Vaupel, D., Mukhin, A., Kimes, A., Horti, A., Koren, A., and London, E. (1998) In vivo studies with [125I]5-I-A-85380, a nicotinic acetylcholine receptor radioligand. Neuroreport 9, 2311–7.

    Article  CAS  PubMed  Google Scholar 

  77. Chefer, S., Horti, A., Lee, K., Koren, A., Jones, D., Gorey, J., Links, J., Mukhin, A., Weinberger, D., and London, E. (1998) In vivo imaging of brain nicotinic acetylcholine receptors with 5-[123I]iodo-A-85380 using single photon emission computed tomography. Life Sci 63, PL355–60.

    Article  CAS  PubMed  Google Scholar 

  78. Ueda, M., Iida, Y., Mukai, T., Mamede, M., Ishizu, K., Ogawa, M., Magata, Y., Konishi, J., and Saji, H. (2004) 5-[123I]Iodo-A-85380: assessment of pharmacological safety, radiation dosimetry and SPECT imaging of brain nicotinic receptors in healthy human subjects. Ann Nucl Med 18, 337–44.

    Article  CAS  PubMed  Google Scholar 

  79. Staley, J., van Dyck, C., Weinzimmer, D., Brenner, E., Baldwin, R., Tamagnan, G., Riccardi, P., Mitsis, E., and Seibyl, J. (2005) 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility. J Nucl Med 46, 1466–72

    CAS  PubMed  Google Scholar 

  80. Volkow, N. D., Ding, Y. S., Fowler, J. S., and Gatley, S. J. (2001) Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 49, 211–20.

    Article  CAS  PubMed  Google Scholar 

  81. Abreo, M., Lin, N.-H., Garvey, D., Gunn, D., Hettinger, A.-M., Wasicak, J., Pavlik, P., Martin, Y., Donnelly-Roberts, D., Anderson, D., Sullivan, J., Williams, M., Arneric, S., and Holladay, M. (1996) Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 38, 817–25.

    Article  Google Scholar 

  82. Schmaljohann, J., Gundisch, D., Minnerop, M., Joe, A., Bucerius, J., Dittmar, C., Jessen, F., Guhlke, S., and Wullner, U. (2005) A simple and fast method for the preparation of n.c.a. 2-[18F]F-A85380 for human use. Appl Radiat Isot 63, 433–5.

    Article  CAS  PubMed  Google Scholar 

  83. Nordberg, A., Lundqvist, H., Hartvig, P., Andersson, J., Johansson, M., Hellstrom-Lindahi, E., and Langstrom, B. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8, 78–84.

    Article  CAS  PubMed  Google Scholar 

  84. Nordberg, A., Lundqvist, H., Hartvig, P., Lilja, A., and Langstrom, B. (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9, 21–7.

    Article  CAS  PubMed  Google Scholar 

  85. Nordberg, A., Lilja, A., Lundqvist, H., Hartvig, P., Amberla, K., Viitanen, M., Warpman, U., Johansson, M., Hellstrom-Lindahl, E., Bjurling, P. et al. (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13, 747–58.

    Article  CAS  PubMed  Google Scholar 

  86. Molinuevo, J. L., Llado, A., and Rami, L. (2005) Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen 20, 77–85.

    Article  PubMed  Google Scholar 

  87. Waxman, E. A. and Lynch, D. R. (2005) N-Methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.

    Article  CAS  PubMed  Google Scholar 

  88. Lipton, S. A. (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6 S61-74.

    Google Scholar 

  89. Barnes, G. N. and Slevin, J. T. (2003) Ionotropic glutamate receptor biology: effect on synaptic connectivity and function in neurological disease. Curr Med Chem 10, 2059–72.

    Article  CAS  PubMed  Google Scholar 

  90. Lipton, S. A. (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2, 155–65.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, C. X. and Shuaib, A. (2005) NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4, 143–51.

    Article  CAS  PubMed  Google Scholar 

  92. Arundine, M. and Tymianski, M. (2004) Molecular mechanisms of glutamatedependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61, 657–68.

    Article  CAS  PubMed  Google Scholar 

  93. Bressan, R., Erlandsson, K., Mulligan, R., Gunn, R., Cunningham, V., Owens, J., Cullum, I., Ell, P., and Pilowsky, L. (2004) A bolus/infusion paradigm for the novel NMDA receptor SPET tracer [123I]CNS 1261. Nucl Med Biol 31, 155–64.

    Article  CAS  PubMed  Google Scholar 

  94. Owens, J., Tebbutt, A., McGregor, A., Kodama, K., Magar, S., Perlman, M., Robins, D., Durant, G., and McCulloch, J. (2000) Synthesis and binding characteristics of N-(1-naphthyl)-N′-(3-[(125)I]-iodophenyl)-N′-methylguanidine ([(125)I]-xxxCNS 1261): a potential SPECT agent for imaging NMDA receptor activation. Nucl Med Biol 27, 557–64.

    Article  CAS  PubMed  Google Scholar 

  95. Waterhouse, R. N. (2003) Imaging the PCP site of the NMDA ion channel. Nucl Med Biol 30, 869–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tiziana Borsello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Waterhouse, R.N., Zhao, J. (2007). In Vivo Tomographic Imaging Studies of Neurodegeneration and Neuroprotection: A Review. In: Borsello, T. (eds) Neuroprotection Methods and Protocols. Methods in Molecular Biology, vol 399. Humana Press. https://doi.org/10.1007/978-1-59745-504-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-504-6_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-666-5

  • Online ISBN: 978-1-59745-504-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics