Skip to main content

Label-Free Relative Quantitation of Prokaryotic Proteomes Using the Accurate Mass and Time Tag Approach

  • Protocol
Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods In Molecular Biology ((MIMB,volume 492))

Summary

Prokaryotic protein expression changes in detectable amounts due to the environmental stimuli encountered by the organism. To understand the underlying mechanisms involved it is necessary to comprehensively detect both the proteins present and their relative abundance under the growth conditions of interest. LC-MS based accurate mass and time (AMT) tag method along with the use of clustering software can provide a visual and more comprehensive understanding of significant protein abundance increases and decreases. These data then can be effectively used to pin-point proteins of interest for further genetic and physiological studies. This method allows for the identification and quantitation of thousands of proteins in a single mass spectrometric analysis and is more comprehensive than two dimensional electrophoresis and shotgun approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adkins, J.N. et al. (2006) Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5, 1450–1461.

    Article  CAS  PubMed  Google Scholar 

  2. Logan, B.E. & Regan, J.M. (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14, 512–518.

    Article  CAS  PubMed  Google Scholar 

  3. Hunter, E.M., Mills, H.J. & Kostka, J.E. (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72, 5689–5701.

    Article  CAS  PubMed  Google Scholar 

  4. van der Heijden, M.G. et al. (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56, 178–187.

    Article  PubMed  Google Scholar 

  5. Zimmer, J.S., Monroe, M.E., Qian, W.J. & Smith, R.D. (2006) Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 25, 450–482.

    Article  CAS  PubMed  Google Scholar 

  6. Pasa-Tolic, L., Masselon, C., Barry, R.C., Shen, Y.&Smith, R.D. (2004) Proteomic analyses using an accurate mass and time tag strategy. Biotechniques 37, 621–624, 626–633, 636 passim.

    CAS  PubMed  Google Scholar 

  7. Callister, S.J. et al. (2006) Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. Aerobic and photo-synthetic cell cultures. J Proteome Res 5, 1940–1947.

    Article  CAS  PubMed  Google Scholar 

  8. Fang, R. et al. (2006) Differential label- free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol Cell Proteomics 5, 714–725.

    CAS  PubMed  Google Scholar 

  9. Umar, A., Luider, T.M., Foekens, J.A. & Pasa-Tolic, L. (2006) NanoLC-FT-ICR MS improves proteome coverage attainable for 3000 laser-microdissected breast carcinoma cells. Proteomics 7, 323–329.

    Article  Google Scholar 

  10. Resch, W., Hixson, K.K., Moore, R.J., Lipton, M.S.&Moss, B. (2006) Protein composition of the vaccinia virus mature virion. Virology 358, 233–247.

    Article  PubMed  Google Scholar 

  11. Shi, L. et al. (2006) Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 281, 29131–29140.

    Article  CAS  PubMed  Google Scholar 

  12. Qian, W.J. et al. (2005) Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach. Mol Cell Proteomics 4, 700–709.

    Article  CAS  PubMed  Google Scholar 

  13. Bogdanov, B. & Smith, R.D. (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24, 168–200.

    Article  CAS  PubMed  Google Scholar 

  14. Eng, J.K., McCormack, A.L. & Yates, J.R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976–989.

    Article  CAS  Google Scholar 

  15. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  CAS  PubMed  Google Scholar 

  16. Hixson, K.K. et al. (2006) Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics. J Proteome Res 5, 3008–3017.

    Article  CAS  PubMed  Google Scholar 

  17. Ding, Y.H. et al. (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta 1764, 1198–1206.

    CAS  PubMed  Google Scholar 

  18. Callister, S.J. et al. (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5, 277–286.

    Article  CAS  PubMed  Google Scholar 

  19. Kelly, R.T. et al. (2006) Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrom-etry. Anal Chem 78, 7796–7801.

    Article  CAS  PubMed  Google Scholar 

  20. Shen, Y. et al. (2001) Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal Chem 73, 1766–1775.

    Article  CAS  PubMed  Google Scholar 

  21. Jaitly, N. et al. (2006) Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal Chem 78, 7397–7409.

    Article  CAS  PubMed  Google Scholar 

  22. Fujiki, Y., Hubbard, A.L., Fowler, S. & Lazarow, P.B. (1982) Isolation of intracellu-lar membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93, 97–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hixson, K.K. (2009). Label-Free Relative Quantitation of Prokaryotic Proteomes Using the Accurate Mass and Time Tag Approach. In: Lipton, M.S., Paša-Tolic, L. (eds) Mass Spectrometry of Proteins and Peptides. Methods In Molecular Biology, vol 492. Humana Press. https://doi.org/10.1007/978-1-59745-493-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-493-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-48-0

  • Online ISBN: 978-1-59745-493-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics