Skip to main content

Two-Dimensional Ion Mobility Analyses of Proteins and Peptides

  • Protocol
Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods In Molecular Biology ((MIMB,volume 492))

Summary

Ion mobility separations have emerged as a major tool for mass spectrometry of proteins and peptides. The high speed of ion mobility spectrometry (IMS) compared with chromatography enables accelerating proteomic analyses at same separation power or raising the peak capacity at equal throughput. Of interest to structural biology, tractable physics of ion transport in gases permits characterizing the structure of macromolecules by matching measured mobilities to values calculated for candidate geometries. The two known experimental methods are drift-tube IMS based on absolute mobility and field asymmetric waveform IMS (FAIMS) based on differential mobility as a function of electric field. Here, we describe combining them into 2D separations coupled to time-of-flight MS, a development made practical by electrodynamic ion funnel interfaces that effectively convey ions in and out of IMS, including “hourglass” funnels to accumulate ions filtered by FAIMS between pulsed injections into IMS. For peptide separations, the peak capacity of FAIMS/IMS is ~500 and potentially higher, a metric close to that of top capillary LC systems. In structural investigations, FAIMS/IMS allows more protein conformers to be distinguished than either stage alone, and extends the dynamic range of detection by an order of magnitude over 1D IMS. A controlled heating of ions by rf field over a variable time in the funnel trap between FAIMS and IMS stages allows following the evolution of selected isomers in both thermodynamic and kinetic aspects, which opens a new approach to mapping the pathways and energy surfaces of protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold, R. and Mann, M. (2003) Mass-spectrometry based proteomics. Nature 422, 198–207

    Article  CAS  PubMed  Google Scholar 

  2. Purves, R. W. and Guevremont, R. (1999) Electrospray ionization high-field asymmetric waveform ion mobility spectrom-etry – mass spectrometry. Anal. Chem. 71, 2346–2357

    Article  CAS  Google Scholar 

  3. Mason, E. A. and McDaniel, E. W. (1988) Transport Properties of Ions in Gases. Wiley, New York

    Book  Google Scholar 

  4. Buryakov, I. A., Krylov, E. V., Nazarov,E. G., and Rasulev, U. K. (1993) A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude asymmetric strong electric field. Int. J. Mass Spectrom. Ion Processes 128, 143–148

    Article  CAS  Google Scholar 

  5. Shvartsburg, A. A., Tang, K., and Smith,R. D. (2004) Modeling the resolution and sensitivity of FAIMS analyses. J. Am. Soc. Mass Spectrom. 15, 1487–1498

    Article  CAS  PubMed  Google Scholar 

  6. Shvartsburg, A. A., Li, F., Tang, K., and Smith, R. D. (2006) High-resolution field asymmetric waveform ion mobility spec-trometry using new planar geometry analyzers. Anal. Chem. 78, 3706–3714

    Article  CAS  PubMed  Google Scholar 

  7. Barnett, D. A., Ells, B., Guevremont, R.,Purves, R. W., and Viehland, L. A. (2000) Evaluation of carrier gases for use in high-field asymmetric waveform ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 11, 1125–1133

    Article  CAS  PubMed  Google Scholar 

  8. Guevremont, R., Barnett, D. A., Purves, R. W., and Vandermey, J. (2000) Analysis of a tryptic digest of pig hemoglobin using ESI-FAIMS-MS. Anal. Chem. 72, 4577–4584

    Article  CAS  PubMed  Google Scholar 

  9. Shvartsburg, A. A., Mashkevich, S. V., and Smith, R. D. (2006) Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms. J. Phys. Chem. A 110, 2663–2673

    Google Scholar 

  10. Ruotolo, B. T., McLean, J. A., Gillig, K. J., and Russell, D. H. (2004) Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides. J. Mass Spec-trom. 39, 361–367

    Article  CAS  Google Scholar 

  11. Shvartsburg, A. A., Li, F., Tang, K., and Smith, R. D. (2006) Characterizing the structures and folding of free proteins using 2-D gas-phase separations: observation of multiple unfolded conformers. Anal. Chem. 78, 3304–3315 ; ibid 8575

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein, S. L., Wyttenbach, T., Baumketner, A., Shea, J. E., Bitan, G., Teplow, D. B., and Bowers, M. T. (2005) Amyloid β -protein: monomer structure and early aggregation states of Aβ 42 and its Pro 19 alloform. J. Am. Chem. Soc. 127, 2075–2084

    Article  CAS  PubMed  Google Scholar 

  13. Borysik, A. J. H., Read, P., Little, D.R., Bateman, R. H., Radford, S. E., and Ashcroft, A. E. (2004) Separation of β 2 -microglobulin conformers by high-field asymmetric waveform ion mobility spec-trometry (FAIMS) coupled to electrospray ionisation mass spectrometry. Rapid Com-mun. Mass Spectrom. 18, 2229–2234

    Article  CAS  Google Scholar 

  14. Carr, T. W. (1984) Plasma Chromatogra-phy. Plenum, New York

    Google Scholar 

  15. Hoaglund, C. S., Valentine, S. J., Sporleder,C. R., Reilly, J. P., and Clemmer, D. E. (1998) Three-dimensional ion mobility/ TOFMS analysis of electrosprayed biomol-ecules. Anal. Chem. 70, 2236–2242

    Article  CAS  PubMed  Google Scholar 

  16. Kapron, J. T., Jemal, M., Duncan, G., Kola-kowski, B., and Purves, R. (2005) Removal of metabolite interference during liquid chromatography/tandem mass spectrom-etry using high-field asymmetric waveform ion mobility spectrometry. Rapid Com-mun. Mass Spectrom. 19, 1979–1983

    Article  CAS  Google Scholar 

  17. Pringle, S. D., Giles, K., Wildgoose, J. L., Williams, J. P., Slade, S. E., Thalassinos, K., Bateman, R. H., Bowers, M. T., and Scrivens, J. H. (2007) An investigation of the mobility separation of some pep-tide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12

    Article  CAS  Google Scholar 

  18. Barnett, D. A., Ells, B., Guevremont, R.,and Purves, R. W. (2002) Application of ESI-FAIMS-MS to the analysis of tryptic peptides. J. Am. Soc. Mass Spectrom. 13, 1282–1291

    Article  CAS  PubMed  Google Scholar 

  19. Venne, K., Bonneil, E., Eng, K., and Thibault, P. (2005) Improvement in pep-tide detection for proteomics analyses using nanoLC-MS and high-field asymmetry waveform ion mobility mass spectrometry. Anal. Chem. 77, 2176–2186

    Article  CAS  PubMed  Google Scholar 

  20. Tang, K., Li, F., Shvartsburg, A. A., Stritt-matter, E. F., and Smith, R. D. (2005) Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal. Chem. 77, 6381–6388

    Article  CAS  PubMed  Google Scholar 

  21. Srebalus, C. A., Li, J., Marshall, W. S.,Clemmer, D. E. (1999) Gas-phase separations of electrosprayed peptide libraries. Anal. Chem. 71, 3918–3927

    Article  CAS  PubMed  Google Scholar 

  22. Asbury, G. R. and Hill, H. H. (2000) Eval-uation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. J. Micro-column. Sep. 12, 172–178

    Article  CAS  Google Scholar 

  23. Tang, K., Shvartsburg, A. A., Lee, H. N.,Prior, D. C., Buschbach, M. A., Li, F., Tol-machev, A. V., Anderson, G. A., and Smith, R. D. (2005) High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77, 3330–3339

    Article  CAS  PubMed  Google Scholar 

  24. Smith, R. D., Shen, Y., and Tang, K. (2004)Ultrasensitive and quantitative analyses from combined separations-mass spectrom-etry for the characterization of proteomes. Acc. Chem. Res. 37, 269–278

    Article  CAS  PubMed  Google Scholar 

  25. McLean, J. A., Ruotolo, B. T., Gillig, K.J., and Russell, D. H. (2005) Ion mobility – mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240, 301–315

    Article  CAS  Google Scholar 

  26. Taraszka, J. A., Kurulugama, R., Sowell, R.,Valentine, S. J., Koeniger, S. L., Arnold, R. J., Miller, D. F., Kaufman, T. C., and Clem-mer, D. E. (2005) Mapping the proteome of drosophila melanogaster: analysis of embryos and adult heads by LC-IMS-MS methods. J. Proteome Res. 4, 1223–1237

    Article  CAS  PubMed  Google Scholar 

  27. Robinson, E. W. and Williams, E. R. (2005)Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements. J. Am. Soc. Mass Spectrom. 16, 1427–1437

    Article  CAS  PubMed  Google Scholar 

  28. Purves, R. W., Ells, B., Barnett, D. A., and Guevremont, R. (2005) Combining H-D exchange and ESI-FAIMS-MS for detecting gas-phase conformers of equine cyto-chrome c. Can. J. Chem. 83, 1961–1968

    Article  CAS  Google Scholar 

  29. Mesleh, M. F., Hunter, J. M., Shvarts-burg, A. A., Schatz, G. C., and Jarrold, M. F. (1996) Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086

    Article  CAS  Google Scholar 

  30. Shvartsburg, A. A., Liu, B., Siu, K. W.M., and Ho, K. M. (2000) Evaluation of ionic mobilities by coupling the scattering on atoms and on electron density. J. Phys. Chem. A 104, 6152–6157

    Google Scholar 

  31. Washburn, M. P., Wolters, D., and Yates, J.R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247

    Article  CAS  PubMed  Google Scholar 

  32. Shvartsburg, A. A., Bryskiewicz, T., Purves,R. W., Tang, K., Guevremont, R., and Smith, R. D. (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: dipole alignment in ion mobility spectrometry? J. Phys. Chem. B 110, 21966–21980

    Google Scholar 

  33. Kim, T., Tolmachev, A. V., Harkewicz, R.,Prior, D. C., Anderson, G., Udseth, H. R., Smith, R. D., Bailey, T. H., Rakov, S., and Futrell, J. H. (2000) Design and implementation of a new electrodynamic ion funnel. Anal. Chem. 72, 2247–2255

    Article  CAS  PubMed  Google Scholar 

  34. Jarrold, M. F. and Bower, J. E. (1992)Mobilities of silicon cluster ions: the reactivity of silicon sausages and spheres. J. Chem. Phys. 96, 9180–9190

    Article  CAS  Google Scholar 

  35. Siems, W. F., Wu, C., Tarver, E. E., Hill,H. H., Larsen, P. R., and McMinn, D. G. (1994) Measuring the resolving power of ion mobility spectrometers. Anal. Chem. 66, 4195–4201

    Article  CAS  Google Scholar 

  36. Dugourd, Ph., Hudgins, R. R., Clemmer,D. E., and Jarrold, M. F. (1997) High-resolution ion mobility measurements. Rev. Sci. Instrum. 68, 1122–1129

    Article  CAS  Google Scholar 

  37. Javahery, G. and Thomson, B. (1997) Asegmented radiofrequency-only quadru-pole collision cell for measurements of ion collision cross section on a triple quadru-pole mass spectrometer. J. Am. Soc. Mass Spectrom. 8, 697–702

    Article  CAS  Google Scholar 

  38. Hoaglund-Hyzer, C. S., Lee, Y. J., Coun-terman, A. E., and Clemmer, D. E. (2002) Coupling ion mobility separations, colli-sional activation techniques, and multiple stages of MS for analysis of complex pep-tide mixtures. Anal. Chem. 74, 992–1006

    Article  CAS  PubMed  Google Scholar 

  39. Guevremont, R. and Purves, R. W. (1999)Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer. Rev. Sci. Instrum. 70, 1370–1384

    Article  CAS  Google Scholar 

  40. Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A. A., and Smith, R. D. (2006) Improving mass spectrometer sensi-tivity using a high-pressure electrodynamic ion funnel interface. J. Am. Soc. Mass Spec-trom. 17, 1299–1305

    Article  CAS  Google Scholar 

  41. Meek, J. M. and Craggs, J. D. (1978) Elec-trical Breakdown of Gases. Wiley, New York

    Google Scholar 

  42. Kim, T., Tang, K., Udseth, H. R., and Smith, R. D. (2001) A multicapillary inlet jet disruption electrodynamic ion funnel interface for improved sensitivity using atmospheric pressure ion sources. Anal. Chem. 73, 4162–4170

    Article  CAS  PubMed  Google Scholar 

  43. Page, J. S., Bogdanov, B., Vilkov, A. N.,Prior, D. C., Buschbach, M. A., Tang, K., and Smith, R. D. (2005) Automatic gain control in mass spectrometry using a jet disrupter electrode in an electrodynamic ion funnel. J. Am. Soc. Mass Spectrom. 16, 244–253

    Article  CAS  PubMed  Google Scholar 

  44. Page, J. S., Tolmachev, A. V., Tang, K., and Smith, R. D. (2005) Variable low-mass filtering using an electrodynamic ion funnel. J. Mass Spectrom. 40, 1215–1222

    Article  CAS  PubMed  Google Scholar 

  45. Purvine, S., Picone, A. F., and Kolker, E.(2004) Standard mixtures for proteome studies. OMICS 8, 79–92

    Article  CAS  PubMed  Google Scholar 

  46. Guevremont, R., Thekkadath, G., and Hilton, C. K. (2005) Compensation voltage (CV) peak shapes using a domed FAIMS with the inner electrode translated to various longitudinal positions. J. Am. Soc. Mass Spectrom. 16, 948–956

    Article  CAS  PubMed  Google Scholar 

  47. Ruotolo, B. T. and Robinson, C. V. (2006)Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 10, 402–408

    Article  CAS  PubMed  Google Scholar 

  48. Li, J., Taraszka, J. A., Counterman, AE., and Clemmer, D. E. (1999) Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int. J. Mass. Spec-trom. 185/186/187, 37–47

    Article  CAS  Google Scholar 

  49. Shelimov, K. B., Clemmer, D. E., Hudgins,R. R., and Jarrold, M. F. (1997) Protein structure in vacuo : gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119, 2240–2248

    Article  CAS  Google Scholar 

  50. Koeniger, S. L., Merenbloom, S. I., andClemmer, D. E. (2006) Evidence for many resolvable structures within conformation types of electrosprayed ubiquitin ions. J. Phys. Chem. B 110, 7017–7021

    Google Scholar 

Download references

Acknowledgments

The development of 2D FAIMS/IMS separations at Pacific Northwest National Laboratory (PNNL) has greatly benefited from collaboration with and contributions by Dr. Fumin Li, David Prior, Michael Buschbach, Gordon Anderson, and Heather Mottaz. Portions of this work were supported by the PNNL Laboratory Directed Research and Development Program, Battelle Industrial Research Development Program, and the National Institute of Health (NCRR Grant RR018522 and NCI Grant CA126191). The research was performed using EMSL, a national scientific user facility located at PNNL and sponsored by the U.S. Department of Energy's Office of Biological and Environment Research).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shvartsburg, A.A., Tang, K., Smith, R.D. (2009). Two-Dimensional Ion Mobility Analyses of Proteins and Peptides. In: Lipton, M.S., Paša-Tolic, L. (eds) Mass Spectrometry of Proteins and Peptides. Methods In Molecular Biology, vol 492. Humana Press. https://doi.org/10.1007/978-1-59745-493-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-493-3_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-48-0

  • Online ISBN: 978-1-59745-493-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics