Skip to main content

Visually Guided Patch-Clamp Recordings in Brain Slices

  • Protocol
Patch-Clamp Analysis

Part of the book series: Neuromethods ((NM,volume 38))

Abstract

Brain slices have become an integral part of synaptic and cellular physiology since the pioneering studies of Henry McIlwain (Li and McIlwain, 1957; Yamamoto and McIlwain, 1966). The hippocampal slice preparation was first brought to the United States from Per Anderson’s lab, initially by Tim Teyler and followed shortly after by Phil Schwartzkroin. Over the years the development of the in vitro brain slice preparation has enabled electrophysiologists to study various aspects of the nervous system in an isolated preparation that still retains many of the brain’s complement of neuronal connections. Through the use of brain slice preparations, much has been learned about the intrinsic properties and morphology of different populations of neurons, the connectivity between different cell types within or between brain regions, the quantal nature of transmitter release, and the various forms of synaptic plasticity. This section focuses on some of the important aspects of preparing and maintaining healthy brain slices, along with some of the rationales for selecting certain procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian, G. K. and Rasmussen, K. (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3, 331–338.

    PubMed  CAS  Google Scholar 

  • Aitken, P. G., Breese, G. R., Dudek, F. E., et al. (1995) Preparative methods for brain slices: a discussion. J. Neurosci. Meth. 59, 139–149.

    CAS  Google Scholar 

  • Alger, B. E. and Teyler, T. J. (1976) Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 110, 463–480.

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F. J. (1992) Extracellular reference electrodes, in Practical Electrophysiological Methods: A guide for In Vitro Studies in Vertebrate Neurobiology, (Kettenmann, H. and Grantyn, R., eds.), Wiley-Liss, New York, pp. 71–182.

    Google Scholar 

  • Armstrong, C. M. and Gilly, W. F. (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. Meth. Enzymol. 207, 101–122.

    Google Scholar 

  • Avshalumov, M. V. and Rice, M. E. (2002) NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J. Neurophysiol. 87, 2896–2903.

    PubMed  CAS  Google Scholar 

  • Barrionuevo, G. and Brown, T. H. (1983) Associative long-term potentiation in hippocampal slices. Proc. Natl. Acad. Sci. (USA) 80, 7347–7351.

    CAS  Google Scholar 

  • Barry, P. H. (1994) JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Meth. 51, 107–116.

    CAS  Google Scholar 

  • Barry, P. H. and Diamond, J. M. (1970) Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes. J. Membrane Biol. 3, 93–122.

    CAS  Google Scholar 

  • Barry, P. H. and Lynch, J. W. (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membrane Biol. 121, 101–117.

    CAS  Google Scholar 

  • Beggs, J. M., Moyer, J. R., Jr., McGann, J. P., and Brown, T. H. (2000) Prolonged synaptic integration in perirhinal cortical neurons. J. Neurophysiol. 83, 3294–3298.

    PubMed  CAS  Google Scholar 

  • Bekkers, J. M. (2000) Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 525, 593–609.

    PubMed  CAS  Google Scholar 

  • Benndorf, K. (1995) Low-noise recording, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum Press, New York, pp. 129–145.

    Google Scholar 

  • Berg-Johnsen, J. and Langmoen, I. A. (1992) Temperature sensitivity of thin unmyelinated fibers in rat hippocampal cortex. Brain Res. 576, 319–321.

    PubMed  CAS  Google Scholar 

  • Bianchi, R. and Wong, R. K. (1994) Carbachol-induced synchronized rhythmic bursts in CA3 neurons of guinea pig hippocampus in vitro. J. Neurophysiol. 72, 131–138.

    PubMed  CAS  Google Scholar 

  • Blanton, M. G., LoTurco, J. J., and Kriegstein, A. R. (1989) Whole cell recordings from neurons in slices of reptilian and mammalian cerebral cortex. J. Neurosci. Meth. 30, 203–210.

    CAS  Google Scholar 

  • Borst, J. G. G., Helmchen, F., and Sakmann, B. (1995) Pre-and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. 489, 825–840.

    PubMed  CAS  Google Scholar 

  • Bozza, T., McGann, J. P., Mombaerts, P., and Wachowiak, M. (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9–21.

    PubMed  CAS  Google Scholar 

  • Brahma, B., Forman, R. E., Stewart, E. E., Nicholson, C., and Rice, M. E. (2000) Ascorbate inhibits edema in brain slices. J. Neurochem. 74, 1263–1270.

    PubMed  CAS  Google Scholar 

  • Brown, T. H. and Furtak, S. C. (2006) Low myelin staining in rat perirhinal cortex and parts of the amygdala. Soc. Neurosci. Abstr. 32, Program No. 638.17.

    Google Scholar 

  • Brown, T. H. and Keenan, C. L. (1987) Visualization of hippocampal synapses in brain slices using video microscopy. Soc. Neurosci. Abstr. 13, 1515.

    Google Scholar 

  • Brown, T. H., Lindquist, D. H., and Furtak, S. C. (2004) Hebbian Synapses, in Encyclopedia of Neuroscience, 3rd ed. (Adelman, G. and Smith, B. H., eds.), Elsevier Science, New York.

    Google Scholar 

  • Brown, T. H., Wong, R. K. S., and Prince, D. A. (1979) Spontaneous miniature synaptic potentials in hippocampal neurons. Brain Res. 177, 194–199.

    PubMed  CAS  Google Scholar 

  • Bureau, I., Shepherd, G. M., and Svoboda, K. (2004) Precise development of functional and anatomical columns in the neocortex. Neuron 42, 789–801.

    PubMed  CAS  Google Scholar 

  • Burwell, R. D. (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J. Comp. Neurol. 437, 17–41.

    PubMed  CAS  Google Scholar 

  • Cahalan, M. and Neher, E. (1992) Patch clamp techniques: an overview. Meth. Enzymol. 207, 3–66.

    PubMed  CAS  Google Scholar 

  • Cang, J. and Isaacson, J. S. (2003) In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116.

    PubMed  CAS  Google Scholar 

  • Carnevale, N. T. and Hines, M. L. (2006) The Neuron Book, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Carnevale, N. T., Tsai, K. Y., Claiborne, B. J., and Brown, T. H. (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J. Neurophysiol. 78, 703–720.

    PubMed  CAS  Google Scholar 

  • Chen, X. and Johnston, D. (2005) Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 3787–3792.

    PubMed  CAS  Google Scholar 

  • Chikwendu, A. and McBain, C. J. (1996) Two temporally overlapping “delayedrectifiers” determine the voltage-dependent potassium current phenotype in cultured hippocampal interneurons. J. Neurophysiol. 76, 1477–1490.

    PubMed  CAS  Google Scholar 

  • Choi, D. W. (1992) Excitotoxic cell death. J. Neurobiol. 23, 1261–1276.

    PubMed  CAS  Google Scholar 

  • Choi, D. W. (1994) Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci. 747, 162–171.

    PubMed  CAS  Google Scholar 

  • Choi, D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. TINS 18, 58–60.

    PubMed  CAS  Google Scholar 

  • Christie, B. R., Eliot, L. S., Ito, K.-I., Miyakawa, H., and Johnston, D. (1995) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J. Neurophysiol. 73, 2553–2557.

    PubMed  CAS  Google Scholar 

  • Claiborne, B. J., Xiang, Z., and Brown, T. H. (1993) Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3, 115–122.

    PubMed  CAS  Google Scholar 

  • Dan, Y. and Poo, M. M. (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048.

    PubMed  Google Scholar 

  • Davson, H., Welch, K., and Segal, M. B. (1987) The Physiology and Pathophysiology of the Cerebrospinal Fluid, Churchill Livingstone, New York, 15–33.

    Google Scholar 

  • Desagher, S., Glowinski, J., and PrĂ©mont, J. ((1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci. 17, 9060–9067.

    PubMed  CAS  Google Scholar 

  • Deuchars, J. and Thomson, A. M. (1996) CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018.

    PubMed  CAS  Google Scholar 

  • Deuchars, J., West, D. C., and Thomson, A. M. (1994) Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro. J. Physiol. 478, 423–435.

    PubMed  Google Scholar 

  • Djurisic, M., Antic, S., Chen, W. R., and Zecevic, D. (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci. 24, 6703–6714.

    PubMed  CAS  Google Scholar 

  • Djurisic, M. and Zecevic, D. (2005) Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes. Ann. N.Y. Acad. Sci. 1048, 92–102.

    PubMed  Google Scholar 

  • Dodt, H.-U. and Zieglgänsberger, W. (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res. 537, 333–336.

    PubMed  CAS  Google Scholar 

  • Duffy, C. J. and Teyler, T. J. (1975) A simple tissue slicer. Physiol. Behav. 14, 525–526.

    PubMed  CAS  Google Scholar 

  • Ebner, T. J. and Chen, G. (1995) Use of voltage-sensitive dyes and optical recordings in the central nervous system. Prog. Neurobiol. 46, 463–506.

    PubMed  CAS  Google Scholar 

  • Edwards, F. A. and Konnerth, A. (1992) Patch-clamping cells in sliced tissue preparations. Meth. Enzymol. 207, 208–222.

    PubMed  CAS  Google Scholar 

  • Edwards, F. A., Konnerth, A., Sakmann, B., and Takahashi, T. (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. PflĂĽgers Arch. 414, 600–612.

    PubMed  CAS  Google Scholar 

  • Faulkner, B. and Brown, T. H. (1999) Morphology and physiology of neurons in the rat perirhinal-lateral amygdala area. J. Comp. Neurol. 411, 613–642.

    PubMed  CAS  Google Scholar 

  • Feig, S. and Lipton, P. (1990) N-methyl-d-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J. Neurochem. 55, 473–483.

    PubMed  CAS  Google Scholar 

  • Ferster, D. and Jagadeesh, B. (1992) EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274.

    PubMed  CAS  Google Scholar 

  • Forscher, P. and Oxford, G. S. (1985) Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J. Gen. Physiol. 85, 743–763.

    PubMed  CAS  Google Scholar 

  • Frazier, D. T., Narahashi, T., and Yamada, M. (1970) The site of action and active form of local anesthetics. J. Pharmacol. Exp. Ther. 171, 45–51.

    PubMed  CAS  Google Scholar 

  • Frick, A., Magee, J., and Johnston, D. (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat. Neurosci. 7, 126–135.

    PubMed  CAS  Google Scholar 

  • Galarreta, M. and Hestrin, S. (1998) Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat. Neurosci. 1, 587–594.

    PubMed  CAS  Google Scholar 

  • Geddes, L. A. (1972) Electrodes and the Measurement of Bioelectric Events, John Wiley & Sons, New York.

    Google Scholar 

  • Gibson, H. L. (1978) Photography by Infrared, John Wiley & Sons, New York, p. 545.

    Google Scholar 

  • Gibson, J. R., Beierlein, M., and Connors, B. W. (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., Kath, W. L., and Spruston, N. (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophysiol. 86, 2998–3010.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., and Spruston, N. (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J. Physiol. 568, 69–82.

    PubMed  CAS  Google Scholar 

  • Gulledge, A. T. and Stuart, G. J. (2005) Cholinergic inhibition of neocortical pyramidal neurons. J. Neurosci. 25, 10308–10320.

    PubMed  CAS  Google Scholar 

  • Gupta, A., Wang, Y., and Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278.

    PubMed  CAS  Google Scholar 

  • Heinemann, S. H. (1995) Guide to data acquisition and analysis, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum Press, New York, pp. 53–91.

    Google Scholar 

  • Helmchen, F., Svoboda, K., Denk, W., and Tank, D. W. (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996.

    PubMed  CAS  Google Scholar 

  • Hestrin, S. and Armstrong, W. E. (1996) Morphology and physiology of cortical neurons in layer I. J. Neurosci. 16, 5290–5300.

    PubMed  CAS  Google Scholar 

  • Higashi, S., Crair, M. C., Kurotani, T., Inokawa, H., and Toyama, K. (1999) Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording. Neurosci. 91, 439–452.

    CAS  Google Scholar 

  • Hille, B. (2001) Ion Channels of Excitable Membranes, 3rd ed., Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hines, M. L. and Carnevale, N. T. (1997) The NEURON simulation environment. Neural Comput. 9, 1179–1209.

    PubMed  CAS  Google Scholar 

  • Hines, M. L. and Carnevale, N. T. (2001) NEURON: a tool for neuroscientists. Neuroscientist 7, 123–135.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A. and Johnston, D. (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., and Johnston, D. (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875.

    PubMed  CAS  Google Scholar 

  • Huguenard, J. R. and Alger, B. E. (1986) Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J. Neurophysiol. 56, 1–18.

    PubMed  CAS  Google Scholar 

  • Ives, J. G. D. and Janz, G. J. (1961) Reference Electrodes: Theory and Practice, Academic Press, New York.

    Google Scholar 

  • Jaffe, D. B. and Brown, T. H. (1997) Calcium dynamics in thorny excrescences of CA3 pyramidal neurons. J. Neurophysiol. 78, 10–18.

    PubMed  CAS  Google Scholar 

  • Jaffe, D. B., Fisher, S. A., and Brown, T. H. (1994) Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J. Neurobiol. 25, 220–233.

    PubMed  CAS  Google Scholar 

  • Janz, G. J. and Ives, J. G. D. (1968) Silver, silver chloride electrodes. Ann. N.Y. Acad. Sci. 148, 210–221.

    CAS  Google Scholar 

  • Johnston, D. and Brown, T. H. (1984) Biophysics and microphysiology of synaptic transmission in hippocampus, in Brain Slices (Dingledine, R., ed.), Plenum, New York, pp. 51–86.

    Google Scholar 

  • Johnston, D., Hoffman, D. A., Magee, J. C., et al. (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525, 75–81.

    PubMed  CAS  Google Scholar 

  • Johnston, D. and Wu, S. M.-S. (1995) Foundations of cellular neurophysiology, MIT Press, Cambridge, MA.

    Google Scholar 

  • Jung, H.-Y., Staff, N. P., and Spruston, N. (2001) Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. J. Neurosci. 21, 3312–3321.

    PubMed  CAS  Google Scholar 

  • Kay, A. R. (1992) An intracellular medium formulary. J. Neurosci. Meth. 44, 91–100.

    CAS  Google Scholar 

  • Kay, A. R. and Wong, R. K. S. (1987) Calcium current activation kinetics in isolated pyramidal neurones of the CA1 region of the mature guinea-pig hippocampus. J. Physiol. 392, 603–616.

    PubMed  CAS  Google Scholar 

  • Keenan, C. L., Chapman, P. F., Chang, V. C., and Brown, T. H. (1988) Videomicroscopy of acute brain slices from amygdala and hippocampus. Brain Res. Bull. 21, 373–383.

    PubMed  CAS  Google Scholar 

  • Keller, J. N., Kindy, M. S., Holtsberg, F. W., et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Kelso, S. R., Ganong, A. H., and Brown, T. H. (1986) Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. (USA) 83, 5326–5330.

    CAS  Google Scholar 

  • Kerr, J. N., Greenberg, D., and Helmchen, F. (2005) Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. (USA) 102, 14063–14068.

    CAS  Google Scholar 

  • Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E., and Svoboda, K. (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124.

    PubMed  CAS  Google Scholar 

  • Korngreen, A. and Sakmann, B. (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurons from young rats: subtypes and gradients. J. Physiol. 525, 621–639.

    PubMed  CAS  Google Scholar 

  • Kovachich, G. B. and Mishra, O. P. (1980) Lipid peroxidation in rat brain cortical slices as measured by the thiobarbituric acid test. J. Neurochem. 35, 1449–1452.

    PubMed  CAS  Google Scholar 

  • Kovachich, G. B. and Mishra, O. P. (1983) The effects of ascorbic acid on malonaldehyde formation, K+, Na+ and water content of brain slices. Exp. Brain Res. 50, 62–68.

    PubMed  CAS  Google Scholar 

  • Landfield, P. W. and Pitler, T. A. (1984) Prolonged Ca2+-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 226, 1089–1092.

    PubMed  CAS  Google Scholar 

  • Lee, A. K., Manns, I. D., Sakmann, B., and Brecht, M. (2006) Whole-cell recordings in freely moving rats. Neuron 51, 399–407.

    PubMed  CAS  Google Scholar 

  • Levis, R. A. and Rae, J. L. (1992) Constructing a patch clamp setup. Meth. Enzymol. 207, 14–66.

    PubMed  CAS  Google Scholar 

  • Li, C.-L. and McIlwain, H. (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J. Physiol. 139, 178–190.

    PubMed  CAS  Google Scholar 

  • Lipton, P., Aitken, P. G., Dudek, F. E., et al. (1995) Making the best of brain slices: comparing preparative methods. J. Neurosci. Meth. 59, 151–156.

    CAS  Google Scholar 

  • Llinás, R. and Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.) 305, 171–195.

    Google Scholar 

  • MacVicar, B. A. (1984) Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J. Neurosci. Meth. 12, 133–149.

    CAS  Google Scholar 

  • Magee, J. C., Avery, R. B., Christie, B. R., and Johnston, D. (1996) Dihydropyridinesensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 3460–3470.

    PubMed  CAS  Google Scholar 

  • Magee, J. C. and Johnston, D. (1995a) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487(pt 1), 67–90.

    PubMed  CAS  Google Scholar 

  • Magee, J. C. and Johnston, D. (1995b) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.

    PubMed  CAS  Google Scholar 

  • Magee, J. C. and Johnston, D. (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213.

    PubMed  CAS  Google Scholar 

  • Magee, J. C. and Johnston, D. (2005) Plasticity of dendritic function. Cur. Opin. Neurobiol. 15, 334–342.

    CAS  Google Scholar 

  • Magistretti, J., Mantegazza, M., de Curtis, M., and Wanke, E. (1998) Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study. Biophys. J. 74, 831–842.

    PubMed  CAS  Google Scholar 

  • Magistretti, J., Mantegazza, M., Guatteo, E., and Wanke, E. (1996) Action potentials recorded with patch-clamp amplifiers: are they genuine? TINS 19, 530–534.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F., Carnevale, N. T., Zador, A. M., Claiborne, B. J., and Brown, T. H. (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J. Neurophysiol. 76, 1904–1923.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F., Maletic-Savatic, M., Shi, S. H., Hayashi, Y., Malinow, R., and Svoboda, K. (1999) Two-photon imaging in living brain slices. Methods 18, 231–239.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F. and Sejnowski, T. J. (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366.

    PubMed  CAS  Google Scholar 

  • Malinow, R. (2003) AMPA receptor trafficking and long-term potentiation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 707–714.

    PubMed  CAS  Google Scholar 

  • Margrie, T. W., Brecht, M., and Sakmann, B. (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. PflĂĽgers Arch. 444, 491–498.

    PubMed  CAS  Google Scholar 

  • Margrie, T. W., Meyer, A. H., Caputi, A., et al. (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918.

    PubMed  CAS  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997a) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (London) 500, 409–440.

    CAS  Google Scholar 

  • Markram, H., LĂĽbke, J., Frotscher, M., and Sakmann, B. (1997b) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215.

    PubMed  CAS  Google Scholar 

  • Marty, A. and Neher, E. (1995) Tight-seal whole-cell recording, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 31–52.

    Google Scholar 

  • Mattson, M. P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. TINS 21, 53–57.

    PubMed  CAS  Google Scholar 

  • McGann, J. P. and Brown, T. H. (2000) Fear conditioning model predicts key temporal aspects of conditioned response production. Psychobiology 28, 303–313.

    Google Scholar 

  • McGann, J. P., Moyer, J. R., Jr., and Brown, T. H. (2001) Predominance of latespiking neurons in layer VI of rat perirhinal cortex. J. Neurosci. 21, 4969–4976.

    PubMed  CAS  Google Scholar 

  • McKernan, M. G. and Shinnick-Gallagher, P. (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611.

    PubMed  CAS  Google Scholar 

  • Michelson, H. B. and Wong, R. K. (1994) Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J. Physiol. 477(pt 1), 35–45.

    PubMed  Google Scholar 

  • Miesenbock, G. and Kevrekidis, I. G. (2005) Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563.

    PubMed  Google Scholar 

  • Mitterdorfer, J. and Bean, B. P. (2002) Potassium currents during the action potential of hippocampal CA3 neurons. J. Neurosci. 22, 10106–10115.

    PubMed  CAS  Google Scholar 

  • Moyer, J. R., Jr. and Brown, T. H. (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J. Neurosci. Meth. 86, 35–54.

    Google Scholar 

  • Moyer, J. R., Jr. and Brown, T. H. (2002) Patch-clamp techniques applied to brain slices, in Advanced Techniques for Patch-Clamp Analysis (Walz, W., Boulton, A. A., and Baker, G. B., eds.), Humana Press, Totowa, NJ, pp. 135–194.

    Google Scholar 

  • Moyer, J. R., Jr. and Disterhoft, J. F. (1994) Nimodipine decreases calcium action potentials in an age-and concentration-dependent manner. Hippocampus 4, 11–18.

    PubMed  Google Scholar 

  • Moyer, J. R., Jr., Disterhoft, J. F., Black, J. P., and Yeh, J. Z. (1994) Dihydropyridinesensitive calcium channels in acutely-dissociated hippocampal CA1 neurons. Neurosci. Res. Comm. 15, 39–48.

    CAS  Google Scholar 

  • Moyer, J. R., Jr., McNay, E. C., and Brown, T. H. (2002) Three classes of pyramidal neurons in layer V of rat perirhinal cortex. Hippocampus 12, 218–234.

    PubMed  Google Scholar 

  • Moyer, J. R., Jr., Power, J. M., Thompson, L. T., and Disterhoft, J. F. (2000) Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J. Neurosci. 20, 5476–5482.

    PubMed  CAS  Google Scholar 

  • Moyer, J. R., Jr., Thompson, L. T., Black, J. P., and Disterhoft, J. F. (1992) Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age-and concentration-dependent manner. J. Neurophysiol. 68, 2100–2109.

    PubMed  CAS  Google Scholar 

  • Moyer, J. R., Jr., Thompson, L. T., and Disterhoft, J. F. (1996) Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J. Neurosci. 16, 5536–5546.

    PubMed  CAS  Google Scholar 

  • Narahashi, T. (1974) Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813–889.

    PubMed  CAS  Google Scholar 

  • Narahashi, T., Moore, J. W., and Scott, W. R. (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 47, 965–974.

    PubMed  CAS  Google Scholar 

  • Neher, E. (1992) Correction for liquid junction potentials in patch clamp experiments. Meth. Enzymol. 207, 123–131.

    PubMed  CAS  Google Scholar 

  • Newman, G. C., Qi, H., Hospod, F. E., and Grundmann, K. (1992) Preservation of hippocampal brain slices with in vivo or in vitro hypothermia. Brain Res. 575, 159–163.

    PubMed  CAS  Google Scholar 

  • Ng, B. and Barry, P. H. (1995) The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J. Neurosci. Meth. 56, 37–41.

    CAS  Google Scholar 

  • Nisenbaum, E. S., Xu, Z. C., and Wilson, C. J. (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol. 71, 1174–1189.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Tanimoto, M., and Yoneda, K. (1988) The protective effect of hypothermia on reversibility in the neuronal function of the hippocampal slice during long lasting anoxia. Neurosci. Lett. 84, 277–282.

    PubMed  CAS  Google Scholar 

  • Padlubnaya, D. B., Parekh, N. H., and Brown, T. H. (2006) Neurophysiological theory of kamin blocking in fear conditioning. Behav. Neurosci. 120, 337–352.

    PubMed  Google Scholar 

  • Paxinos, G. and Watson, C. (1998) The Rat Brain in Stereotaxic Coordinates, 3rd ed, Academic Press, San Diego.

    Google Scholar 

  • Pei, X., Volgushev, M., Vidyasagar, T. R., and Creutzfeldt, O. D. (1991) Whole cell recording and conductance measurements in cat visual cortex in-vivo. Neuroreport 2, 485–488.

    PubMed  CAS  Google Scholar 

  • Penner, R. (1995) A practical guide to patch clamping, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum Press, New York, pp. 3–30.

    Google Scholar 

  • Peterlin, Z. A., Kozloski, J., Mao, B.-Q., Tsiola, A., and Yuste, R. (2000) Optical probing of neuronal circuits with calcium indicators. Proc. Natl. Acad. Sci. (USA) 97, 3619–3624.

    CAS  Google Scholar 

  • Power, J. M., Oh, M. M., and Disterhoft, J. F. (2001) Metrifonate decreases sI AHP in CA1 pyramidal neurons in vitro. J. Neurophysiol. 85, 319–322.

    PubMed  CAS  Google Scholar 

  • Power, J. M., Wu, W. W., Sametsky, E., Oh, M. M., and Disterhoft, J. F. (2002) Agerelated enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J. Neurosci. 22, 7234–7243.

    PubMed  CAS  Google Scholar 

  • Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B. (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–284.

    PubMed  CAS  Google Scholar 

  • Rice, M. E. (1999) Use of ascorbate in the preparation and maintenance of brain slices. Methods 18, 144–149.

    PubMed  CAS  Google Scholar 

  • Rice, M. E. (2000) Ascorbate regulation and its neuroprotective role in the brain. TINS 23, 209–216.

    PubMed  CAS  Google Scholar 

  • Rice, M. E., PĂ©rez-PinzĂłn, M. A., and Lee, E. J. K. (1994) Ascorbic acid, but not glutathione, is taken up by brain slices and preserves cell morphology. J. Neurophysiol. 71, 1591–1596

    PubMed  CAS  Google Scholar 

  • Rothman, S. M. (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5, 1483–1489.

    PubMed  CAS  Google Scholar 

  • Saeed, D., Goetzman, B. W., and Gospe, S. M., Jr. (1993) Brain injury and protective effects of hypothermia using triphenyltetrazolium chloride in neonatal rat. Pediatric Neurology 9, 263–267.

    PubMed  CAS  Google Scholar 

  • Sah, P., Faber, E. S., Lopez De Armentia, M., and Power, J. (2003) The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–834.

    PubMed  CAS  Google Scholar 

  • Sakmann, B. and Neher, E. (1995) Geometric parameters of pipettes and membrane patches, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum Press, New York, pp. 637–650.

    Google Scholar 

  • Sakmann, B. and Stuart, G. (1995) Patch-pipette recordings from the soma, dendrites, and axon of neurons in brain slices, in Single-Channel Recording, 2nd ed. (Sakmann, B. and Neher, E., eds.), Plenum Press, New York, pp. 199–211.

    Google Scholar 

  • Sather, W., Dieudonne, S., MacDonald, J. F., and Ascher, P. (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J. Physiol. 450, 643–672.

    PubMed  CAS  Google Scholar 

  • Scharfman, H. E. (1996) Hyperexcitability of entorhinal cortex and hippocampus after application of aminooxyacetic acid (AOAA) to layer III of the rat medial entorhinal cortex in vitro. J. Neurophysiol. 76, 2986–3001.

    PubMed  CAS  Google Scholar 

  • Schurr, A., Payne, R. S., Miller, J. J., and Rigor, B. M. (1997a) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J. Neurochem. 69, 423–426.

    PubMed  CAS  Google Scholar 

  • Schurr, A., Payne, R. S., Miller, J. J., and Rigor, B. M. (1997b) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 744, 105–111.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 85, 423–436.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Andersen, P. (1975) Glutamic acid sensitivity of dendrites in hippocampal slices in vitro, in Advances in Neurology (Kreutzberg, G. W., ed.), Raven Press, New York, pp. 45–51.

    Google Scholar 

  • Sharp, P. E. and La Regina, M. C. (eds.) (1998) The Laboratory Rat. The Laboratory Animal Pocket Reference Series, (Suckow, M. A., ed.), CRC Press, New York, p. 13.

    Google Scholar 

  • Sherman-Gold, R. (ed.) (1993) The Axon Guide. Axon Instruments, Foster City, CA.

    Google Scholar 

  • Sigworth, F. J. (1995) Design of the EPC-9, a computer-controlled patch-clamp amplifier. 1. Hardware. J. Neurosci. Meth. 56, 195–202.

    Google Scholar 

  • Sigworth, F. J., Affolter, H., and Neher, E. (1995) Design of the EPC-9, a computercontrolled patch-clamp amplifier. 2. Software. J. Neurosci. Meth. 56, 203–215.

    CAS  Google Scholar 

  • Skrede, K. K. and Westgaard, R. H. (1971) The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 35, 589–593.

    PubMed  CAS  Google Scholar 

  • Spruston, N., Jaffe, D., Williams, S. H., and Johnston, D. (1993) Voltage-and spaceclamp errors associated with the measurement of electrotonically remote synaptic events. J. Neurophysiol. 70, 781–802.

    PubMed  CAS  Google Scholar 

  • Staley, K. J., Otis, T. S., and Mody, I. (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol. 67, 1346–1358.

    PubMed  CAS  Google Scholar 

  • Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003) In vivo twophoton calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. (USA) 100, 7319–7324.

    CAS  Google Scholar 

  • Stuart, G. and Sakmann, B. (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076.

    PubMed  CAS  Google Scholar 

  • Stuart, G., Schiller, J., and Sakmann, B. (1997a) Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505, 617–632.

    PubMed  CAS  Google Scholar 

  • Stuart, G., Spruston, N., Sakmann, B., and Hausser, M. (1997b) Action potential initiation and backpropagation in neurons of the mammalian CNS. TINS 20, 125–131.

    PubMed  CAS  Google Scholar 

  • Stuart, G. J., Dodt, H.-U., and Sakmann, B. (1993) Patch clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. PflĂĽgers Arch. 423, 511–518.

    PubMed  CAS  Google Scholar 

  • Stuart, G. J. and Sakmann, B. (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72.

    PubMed  CAS  Google Scholar 

  • Takahashi, T. (1978) Intracellular recording from visually identified motoneurons in rat spinal cord slices. Proc. R. Soc. Lond. (B) 202, 417–421.

    CAS  Google Scholar 

  • Tarczy-Hornoch, K., Martin, K. A. C., Jack, J. J. B., and Stratford, K. J. (1998) Synaptic interactions between smooth and spiny neurones in layer 4 of cat visual cortex in vitro. J. Physiol. (Lond.) 508, 351–363.

    CAS  Google Scholar 

  • Thibault, O. and Landfield, P. W. (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272, 1017–1020.

    PubMed  CAS  Google Scholar 

  • Thompson, L. T., Moyer, J. R., Jr., and Disterhoft, J. F. (1996) Transient changes in excitability of rabbit CA3 neurons with a time-course appropriate to support memory consolidation. J. Neurophysiol. 76, 1836–1849.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M. and Destexhe, A. (1999) Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92, 1193–1215.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M. and Deuchars, J. (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb. Cortex 7, 510–522.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M. and West, D. C. (1993) Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Neuroscience 54, 329–346.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M. and West, D. C. (2003) Presynaptic frequency filtering in the gamma frequency band; dual intracellular recordings in slices of adult rat and cat neocortex. Cereb. Cortex 13, 136–143.

    PubMed  Google Scholar 

  • Thomson, A. M., West, D. C., Wang, Y., and Bannister, A. P. (2002) Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953.

    PubMed  Google Scholar 

  • Tieu, K. H., Keidel, A. L., McGann, J. P., Faulkner, B., and Brown, T. H. (1999) Perirhinal-amygdala circuit-level computational model of temporal encoding in fear conditioning. Psychobiology 27, 1–25.

    Google Scholar 

  • Tominaga, T., Tominaga, Y., and Ichikawa, M. (2002) Optical imaging of long-lasting depolarization on burst stimulation in area CA1 of rat hippocampal slices. J. Neurophysiol. 88, 1523–1532.

    PubMed  Google Scholar 

  • Trussell, L. O. and Jackson, M. B. (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci. 7, 3306–3316.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.

    PubMed  CAS  Google Scholar 

  • Wachowiak, M. and Cohen, L. B. (2001) Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–35.

    PubMed  CAS  Google Scholar 

  • Watson, G. B., Lopez, O. T., Charles, V. D., and Lanthorn, T. H. (1994) Assessment of long-term effects of transient anoxia on metabolic activity of rat hippocampal slices using triphenyltetrazolium chloride. J. Neurosci. Meth. 53, 203–208.

    CAS  Google Scholar 

  • White, J. A., Sekar, N. S., and Kay, A. R. (1995) Errors in persistent inward currents generated by space-clamp errors: a modeling study. J. Neurophysiol. 73, 2369–2377.

    PubMed  CAS  Google Scholar 

  • Williams, S. and Johnston, D. (1988) Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science 242, 84–87.

    PubMed  CAS  Google Scholar 

  • Wu, W. W., Chan, C. S., and Disterhoft, J. F. (2004) Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation. J. Neurophysiol. 92, 2346–2356.

    PubMed  CAS  Google Scholar 

  • Wu, W. W., Oh, M. M., and Disterhoft, J. F. (2002) Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory. Ageing Res. Rev. 1, 181–207.

    PubMed  CAS  Google Scholar 

  • Xiang, Z. and Brown, T. H. (1998) Complex synaptic current waveforms evoked in hippocampal pyramidal neurons by extracellular stimulation of dentate gyrus. J. Neurophysiol. 79, 2475–2484.

    PubMed  CAS  Google Scholar 

  • Xiang, Z., Greenwood, A. C., Kairiss, E. W., and Brown, T. H. (1994) Quantal mechanism of long-term potentiation in hippocampal mossy-fiber synapses. J. Neurophysiol. 71, 2552–2556.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C. (1975) Recording of electrical activity from microscopically identified neurons of the mammalian brain. Experientia 31, 309–311.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C. and Chujo, T. (1978) Visualization of central neurons and recording of action potentials. Exp. Brain Res. 31, 299–301.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C. and McIlwain, H. (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J. Neurochem. 13, 1333–1343.

    PubMed  CAS  Google Scholar 

  • Yeckel, M. F., Kapur, A., and Johnston, D. (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat. Neurosci. 2, 625–633.

    PubMed  CAS  Google Scholar 

  • Yuan, W., Burkhalter, A., and Nerbonne, J. M. (2005) Functional role of the fast transient outward K+ current IA in pyramidal neurons in (rat) primary visual cortex. J. Neurosci. 25, 9185–9194.

    PubMed  CAS  Google Scholar 

  • Yuste, R. and Denk, W. (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684.

    PubMed  CAS  Google Scholar 

  • Zecevic, D. and Antic, S. (1998) Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. Histochem. J. 30, 197–216.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Weiner, J. L., Valiante, T. A., et al. (1994) Whole-cell recording of the Ca2+-dependent slow afterhyperpolarization in hippocampal neurones: effects of internally applied anions. PflĂĽgers Arch. 426, 247–253.

    PubMed  CAS  Google Scholar 

  • Zhu, J. J. and Connors, B. W. (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183.

    PubMed  CAS  Google Scholar 

  • Zhu, Y. and Zhu, J. J. (2004) Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J. Neurosci. 24, 1272–1279.

    PubMed  CAS  Google Scholar 

  • Zilles, K. and Wree, A. (1995) Cortex: Areal and laminar structure, in The Rat Nervous System, 2nd ed. (Paxinos, G., ed.), Academic Press, San Diego, pp. 649–685.

    Google Scholar 

  • Zochowski, M., Wachowiak, M., Falk, C. X., et al. (2000) Imaging membrane potential with voltage-sensitive dyes. Biol. Bull. 198, 1–21.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Moyer, J.R., Brown, T.H. (2007). Visually Guided Patch-Clamp Recordings in Brain Slices. In: Walz, W. (eds) Patch-Clamp Analysis. Neuromethods, vol 38. Humana Press. https://doi.org/10.1007/978-1-59745-492-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-492-6_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-705-1

  • Online ISBN: 978-1-59745-492-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics