Skip to main content

Combining Uncaging Techniques with Patch-Clamp Recording and Optical Physiology

  • Protocol

Part of the book series: Neuromethods ((NM,volume 38))

Abstract

Patch-clamp recording is a powerful approach to monitoring membrane electrical activity with high temporal resolution. However, the spatial resolution of patch-clamp recording in a distributed structure such as a neuron or a brain slice is limited by the fact that each electrode records from just one point, making recording from more than a very small number of points impractical.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Adams, S. R. and Tsien, R. Y. (1993) Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784.

    Article  PubMed  CAS  Google Scholar 

  • Bagal, A. A., Kao, J. P. Y., et al. (2005) Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc. Natl. Acad. Sci. USA 102(40), 14434–14439.

    Article  PubMed  CAS  Google Scholar 

  • Banghart, M., Borges, K. et al. (2004) Light-activated ion channels for remote control of neuronal firing. Nature Neurosci. 7(12), 1381–1386.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, E. S., Zhang, F., et al. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8(9), 1263–1268.

    Article  PubMed  CAS  Google Scholar 

  • Bozza, T., McGann, J. P., et al. (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42(1), 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Brasnjo, G. and Otis, T. S. (2004) Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber-Purkinje cell synapse. Proc. Natl. Acad. Sci. USA 101(16), 6273–6278.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, J. J., Banghart, M. R., et al. (2006) Light-induced depolarization of neurons using a modified Shaker K+ channel and a molecular photoswitch. J. Neurophys. 96(5), 2792–2796.

    Article  CAS  Google Scholar 

  • Denk, W. (1997) Pulsing mercury arc lamps for uncaging and fast imaging. J. Neurosci. Methods 72(1), 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. S. (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes, transmitter uptake gets faster during development. J. Neurosci. 25(11), 2906–2916.

    Article  PubMed  CAS  Google Scholar 

  • Djurisic, M., Zochowski, M., et al. (2003) Optical monitoring of neural activity using voltage-sensitive dyes. Biophotonics 361, 423–451.

    Article  CAS  Google Scholar 

  • Dodt, H. U., Eder, M., et al. (2002) Infrared-guided laser stimulation of neurons in brain slices. Sci STKE 2002(120), PL2.

    Article  PubMed  Google Scholar 

  • Dorman, G. and Prestwich, G. D. (2000) Using photolabile ligands in drug discovery and development. Trends Biotech. 18(2), 64–77.

    Article  CAS  Google Scholar 

  • Eberius, C. and Schild, D. (2001) Local photolysis using tapered quartz fibres. Pflügers Arch. 443(2), 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Eder, M., Zieglgansberger, W., et al. (2004) Shining light on neurons—elucidation of neuronal functions by photostimulation. Rev. Neurosci. 15(3), 167–183.

    PubMed  Google Scholar 

  • Engels, J. and Schlaeger, E. J. (1977) Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J. Med. Chem. 20(7), 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Fedoryak, O. D., Sul, J. Y., et al. (2005) Synthesis of a caged glutamate for efficient one-and two-photon photorelease on living cells. Chem. Commun. 29, 3664–3666.

    Article  Google Scholar 

  • Furuta, T., Wang, S. S.-H., et al. (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: novel photolabile protecting groups with biologically useful crosssections for two-photon photolysis. Proc. Natl. Acad. Sci. USA 96, 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Garaschuk, O., Milos, R.-I., et al. (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat. Protocols 1(1), 380–386.

    Article  CAS  Google Scholar 

  • Gasparini, S. and Magee, J. C. (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26(7), 2088–2100.

    Article  PubMed  CAS  Google Scholar 

  • Goard, M., Aakalu, G., et al. (2005) Light-mediated inhibition of protein synthesis. Chem. Biol. 12(6), 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Godwin, D. W., Che, D. P., et al. (1997) Photostimulation with caged neurotransmitters using fiber optic light guides. J. Neurosci. Methods 73(1), 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A. and Hildesheim, R. (2004) VSDI: A new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5(11), 874–885.

    Article  PubMed  CAS  Google Scholar 

  • Gurney, A. M. (1994) Flash photolysis of caged compounds, in Microelectrode Techniques (Ogden, D. ed.), Company of Biologists Limited, Cambridge, pp. 389–406.

    Google Scholar 

  • Helmchen, F. and Denk, W. (2005) Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940.

    Article  PubMed  CAS  Google Scholar 

  • Isaacson, J. S. and Nicoll, R. A. (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proc. Natl. Acad. Sci. USA 88(23), 10936–10940.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. T. and Nixon, V. L. (2000) Sperm-induced Ca2+ oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1,4,5-trisphosphate during mammalian fertilization. Dev. Biol. 225(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kandler, K., Katz, L. C., et al. (1998) Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nature Neurosci. 1(2), 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, J. H., Forbush, B. 3rd, et al. (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na-K pump of human red blood cell ghosts. Biochemistry 17(10), 1929–1935.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L. C. and Dalva, M. B. (1994) Scanning laser photostimulation, a new approach for analyzing brain circuits. J. Neurosci. Methods 54(2), 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Khodakhah, K. and Armstrong, C. M. (1997) Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 94(25), 14009–14014.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R. H., Chambers, J. J., et al. (2005) Photochemical tools for remote control of ion channels in excitable cells. Nat. Chem. Biol. 1(7), 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D. S. (2005) The preparation and in vivo applications of caged peptides and proteins. Curr. Opin. Chem. Biol. 9(6), 570–575.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. X., Zdanowicz, M., et al. (2003) Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function. Dev. Dyn. 226(3), 540–550.

    Article  PubMed  Google Scholar 

  • Makings, L. R. and Tsien, R. Y. (1994) Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol. Chem. 269(9), 6282–6285.

    PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Ellis-Davies, G. C. R., et al. (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4(11), 1086–1092.

    Article  PubMed  CAS  Google Scholar 

  • McCarron, J. G., MacMillan, D., et al. (2004) Origin and mechanisms of Ca2+ waves in smooth muscle as revealed by localized photolysis of caged inositol 1,4,5-trisphosphate. J. Biol. Chem. 279(9), 8417–8427.

    Article  PubMed  CAS  Google Scholar 

  • Miesenböck, G. and Kevrekidis, I. G. (2005) Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563.

    Article  PubMed  Google Scholar 

  • Momotake, A., Lindegger, N., et al. (2006) The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells. Nat. Methods 3(1), 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Nerbonne, J. M. (1996) Caged compounds: tools for illuminating neuronal responses and connections. Curr. Opin. Neurobiol. 6(3), 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, Q. T., Tsai, P. S., et al. (2006) MPScope: a versatile software suite for multiphoton microscopy. J. Neurosci. Methods 156(1–2), 351–359.

    Article  PubMed  Google Scholar 

  • Pavlos, C. M., Xu, H., et al. (2005) Photosensitive precursors to nitric oxide. Curr. Top. Med. Chem. 5(7), 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Pettit, D. L., Wang, S. S.-H., et al. (1997) Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron 19(3), 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, G. (1998) Flash lamp-based irradiation of caged compounds. Methods Enzymol. 291, 202–222.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F. M., Margulis, M., et al. (1997) N-Nmoc-L-glutamate, a new caged glutamate with high chemical stability and low pre-photolysis activity. J. Biol. Chem. 272(52), 32933–32939.

    Article  PubMed  CAS  Google Scholar 

  • Sarkisov, D. V., Gelber, S. E., et al. (2007) Synapse-specificity of calcium release probed by chemical two-photon uncaging of IP3 (in review).

    Google Scholar 

  • Sarkisov, D. V. and Wang, S. S.-H. (2006) Alignment and calibration of a focal neurotransmitter uncaging system. Nat. Protocols 1(2), 828–832.

    Article  CAS  Google Scholar 

  • Shepherd, G. M. G., Pologruto, T. A., et al. (2003) Circuit analysis of experiencedependent plasticity in the developing rat barrel cortex. Neuron 38(2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Shoham, S., O’Connor, D. H., et al. (2005) Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2(11), 837–843.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, M. R., Nimmerjahn, A., et al. (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J. Neurophys. 94(2), 1636–1644.

    Article  CAS  Google Scholar 

  • Svoboda, K., Tank, D. W., et al. (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272(5262), 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Tan, E. M., Yamaguchi, Y., et al. (2006) Selective and quickly reversible inactivation of Mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51(2), 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Theriot, J. A. and Mitchison, T. J. (1991) Actin microfilament dynamics in locomoting cells. Nature 352(6331), 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S. M., Kao, J. P. Y., et al. (2005) Flashy science: controlling neural function with light. J. Neurosci. 25(45), 10358–10365.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y. (1999) Monitoring cell calcium, in Calcium as a Cellular Regulator (Carafoli, E. and Klee, C.B., eds.), pp. 28–54, Oxford University Press, New York.

    Google Scholar 

  • Wang, J. W., Wong, A. M., et al. (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112(2), 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. S.-H. and Augustine, G. J. (1995) Confocal imaging and local photolysis of caged compounds, dual probes of synaptic function. Neuron 15(4), 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Xu, T., Naraghi, M., et al. (1997) Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73(1), 532–545.

    Article  PubMed  CAS  Google Scholar 

  • Yang, E. J., Harris, A. Z., et al. (2006) Variable kainate receptor distributions of Oriens interneurons. J. Neurophys. 96(3), 1683–1689.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sarkisov, D.V., Wang, S.SH. (2007). Combining Uncaging Techniques with Patch-Clamp Recording and Optical Physiology. In: Walz, W. (eds) Patch-Clamp Analysis. Neuromethods, vol 38. Humana Press. https://doi.org/10.1007/978-1-59745-492-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-492-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-705-1

  • Online ISBN: 978-1-59745-492-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics