Skip to main content

In Vitro and In Vivo Analysis of Microtubule-Destabilizing Kinesins

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 392))

Abstract

Cellular microtubules are rigid in comparison to other cytoskeletal elements (1, 2). To facilitate cytoplasmic remodeling and timely responses to cell signaling events, microtubules depolymerize and repolymerize rapidly at their ends (3). These dynamic properties are critically important for many cellular functions, such as spindle assembly, the capture and segregation of chromosomes during cell division and cell motility. Microtubule dynamics are spatially and temporally controlled in the cell by accessory proteins. Molecular motor proteins of the kinesin superfamily that act to destabilize microtubules play important roles in this regulation (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Felgner, H., Frank, R., and Schliwa, M. (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109(Pt. 2), 509–516.

    CAS  PubMed  Google Scholar 

  2. Gittes, F., Mickey, B., Nettleton, J., and Howard, J. (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934.

    Article  CAS  PubMed  Google Scholar 

  3. Desai, A. and Mitchison, T.J. (1997) Microtubule polymerization dynamics. Annu. Rev. CellDev. Biol. 13, 83–117.

    Article  CAS  Google Scholar 

  4. Wordeman, L. (2005) Microtubule-depolymerizing kinesins. Curr. Opin. Cell Biol. 17, 82–88.

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., Goldstein, L.S., Goodson, H.V., Hirokawa, N., Howard, J., Malmberg, R.L., McIntosh, J.R., Miki, H., Mitchison, T.J., Okada, Y., Reddy, A.S., Saxton, W.M., Schliwa, M., Scholey, J.M., Vale, R.D., Walczak, C.E., and Wordeman, L. (2004) A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22.

    Article  CAS  PubMed  Google Scholar 

  6. Chu, H.M., Yun, M., Anderson, D.E., Sage, H., Park, H.W., and Endow, S.A. (2005) Kar3 interaction with Cik1 alters motor structure and function. EMBO J. 24, 3214–3223.

    Article  CAS  PubMed  Google Scholar 

  7. Sproul, L.R., Anderson, D.J., Mackey, A.T., Saunders, W.S., and Gilbert, S.P. (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427.

    Article  CAS  PubMed  Google Scholar 

  8. Desai, A., Verma, S., Mitchison, T.J., and Walczak, C.E. (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78.

    Article  CAS  PubMed  Google Scholar 

  9. Wordeman, L. and Mitchison, T.J. (1995) Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104.

    Article  CAS  PubMed  Google Scholar 

  10. Ovechkina, Y., Wagenbach, M., and Wordeman, L. (2002) K-loop insertion restores microtubule depolymerizing activity of a “neckless” MCAK mutant. J. Cell Biol. 159, 557–562.

    Article  CAS  PubMed  Google Scholar 

  11. Moore, A. and Wordeman, L. (2004) C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochem. J. 383, 227–235.

    Article  CAS  PubMed  Google Scholar 

  12. Hunter, A.W., Caplow, M., Coy, D.L., Hancock, W.O., Diez, S., Wordeman, L., and Howard, J. (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457.

    Article  CAS  PubMed  Google Scholar 

  13. Hyman, A.A., Salser, S., Drechsel, D.N., Unwin, N., and Mitchison, T.J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167.

    CAS  PubMed  Google Scholar 

  14. Gonzalez-Garay, M.L. and Cabral, F. (1996) Alpha-tubulin limits its own synthesis: evidence for a mechanism involving translational repression. J. Cell Biol. 135, 1525–1534.

    Article  CAS  PubMed  Google Scholar 

  15. Cleveland, D.W., Lopata, M.A., Sherline, P., and Kirschner, M.W. (1981) Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25, 537–546.

    Article  CAS  PubMed  Google Scholar 

  16. Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., and Mitchison, T. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–485.

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien, E.T., Salmon, E.D., and Erickson, H.P. (1997) How calcium causes microtubule depolymerization. Cell Motil. Cytoskelet. 36, 125–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stumpff, J. et al. (2007). In Vitro and In Vivo Analysis of Microtubule-Destabilizing Kinesins. In: Sperry, A.O. (eds) Molecular Motors. Methods in Molecular Biology™, vol 392. Humana Press. https://doi.org/10.1007/978-1-59745-490-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-490-2_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-665-8

  • Online ISBN: 978-1-59745-490-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics