Skip to main content

Forming an α-Hemolysin Nanopore for Single-Molecule Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Nanopore analysis of single molecules can be performed by measuring the modulation in ionic current passing through the nanopore while an individual biomolecule such as DNA or RNA is resident in, translocating through, or otherwise interacting with the pore. The corresponding current signature has been shown to reveal properties of the biomolecule and information on its interactions with the pore. The α-hemolysin nanopore remains the pore of choice, particularly for single-molecule analysis of nucleic acids, because of its internal dimensions, hydrophilicity, and low-noise characteristics. In this chapter we present a detailed protocol for forming a robust α-hemolysin nanopore (or multiple nanopores) for single-molecule analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bhakdi, S., and Tranum-Jensen, J. (1991). Alpha-toxin of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 55, 733–751.

    CAS  Google Scholar 

  2. Song, L.Z., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J.E. (1996). Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866.

    Article  CAS  Google Scholar 

  3. Kasianowicz, J.J., Brandin, E., Branton, D., and Deamer, D.W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. U. S. A. 93, 13770–13773.

    Article  CAS  Google Scholar 

  4. Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E., and Deamer, D.W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233.

    Article  CAS  Google Scholar 

  5. Nakane, J., Wiggin, M., and Marziali, A. (2004). A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J. 87, 615–621.

    Article  CAS  Google Scholar 

  6. Howorka, S., Movileanu, L., Braha, O., and Bayley, H. (2001). Kinetics of duplex for individual DNA strands within a single protein nanopore. Proc. Natl Acad. Sci. U. S. A. 98, 12997–13001.

    Article  Google Scholar 

  7. Sauer-Budge, A.F., Nyamwanda, J.A., Lubensky, D.K., and Branton, D. (2003). Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90, 238101-1–238101-4.

    Article  Google Scholar 

  8. Ashkenasy, N., Sanchez-Quesada, J., Bayley, H., and Ghadiri, M.R. (2005). Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed. 44, 1401–1404.

    Article  CAS  Google Scholar 

  9. Astier, Y., Braha, O., and Bayley, H. (2006). Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128, 1705–1710.

    Article  CAS  Google Scholar 

  10. Shin, S., Luchian, T., Cheley, S., Braha, O., and Bayley, H. (2002). Kinetics of a reversible covalent-bond-forming reaction observed at the single molecule level. Angew. Chem. Int. Ed. 41, 3707–3709.

    Article  CAS  Google Scholar 

  11. Luchian, T., Shin, S., and Bayley, H. (2003). Kinetics of a three-step reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 42, 1925–1929.

    Google Scholar 

  12. Jung, Y., Bayley, H., and Movileanu, L. (2006). Temperature-responsive protein pores. J. Am. Chem. Soc. 128, 15332–15340.

    Article  CAS  Google Scholar 

  13. Oukhaled, G., Mathe, J., Biance, A.L., Bacri, L., Betton, J.M., Lairez, D., Pelta, J., and Auvray, L. (2007). Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101-1–158101-4.

    Article  Google Scholar 

  14. Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481.

    Article  CAS  Google Scholar 

  15. Nakane, J.J., Akeson, M., and Marziali, A. (2003). Nanopore sensors for nucleic acid analysis. J. Phys.: Condens. Matter. 15, 1365–1393.

    Article  Google Scholar 

  16. Rhee, M., and Burns, M.A. (2006). Nanopore sequencing technology: research trends and applications. Trends Biotechnol. 24, 580–586.

    Article  CAS  Google Scholar 

  17. Dekker, C. (2007). Solid-state nanopores. Nat. Nanotechnol. 2, 209–215.

    Article  CAS  Google Scholar 

  18. Tropini C., and Marziali A. (2007). Multi-nanopore force spectroscopy for DNA analysis. Biophys. J. 92, 1632–1637.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the University of British Columbia Applied Biophysics Laboratory, in particular, Vincent Tabard-Cossa and Dhruti Trivedi. Many thanks to Jonathan Nakane, Mark Akeson, and Carolina Tropini for their important contributions to this protocol. This work was supported by the US National Institutes of Health (NIH). Financial support for Matthew Wiggin was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jetha, N.N., Wiggin, M., Marziali, A. (2009). Forming an α-Hemolysin Nanopore for Single-Molecule Analysis. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics