Skip to main content

Microfluidic Chips Designed for Measuring Biomolecules Through a Microbead-Based Quantum Dot Fluorescence Assay

  • Protocol
  • First Online:
  • 3687 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

This chapter introduces the demonstration of specific antibody detection by using a microbead-based assay with quantum dot (QD) fluorescence on a polydimethylsiloxane (PDMS) microfluidic chip. The microfluidic chip is designed to isolate a single microbead where the binding reaction of antibodies occurs on the surface. The microfluidic chip is fabricated on a glass substrate using a transparent silicone elastomer, PDMS, for easy access of monitoring and flexible gate operations to capture the single microbead. For antibody detection, a sequence of functionalized assays has been performed in the fabricated chip, including the capturing of microbeads, antibody injection into a microchamber, quantum dot injection, and fluorescence detection. Various concentrations of human IgG antibodies have been introduced to bind to a single microbead captured and isolated inside a designated microchamber in a small volume of 75 pL. Fluorescence detection is monitored using a CCD camera after the second binding with the QDs conjugated with anti-human IgG. In this experiment, a human IgG antibody concentration below 0.1 μg/mL has been successfully detected.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Manz, A. and Bekker, H. (1998). Microsystem Technology in Chemistry and Life Science (Springer Topics in Current Chemistry, Vol. 194), Springer, Berlin.

    Book  Google Scholar 

  2. Hong, J. W. and Quake, S. R. (2003). Integrated nanoliter systems. Nat. Biotechnol. 21, 1179.

    Article  CAS  Google Scholar 

  3. Cho, S. K., Moon, H. and Kim, C.-J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromechanical Systems 12, 70–80.

    Article  Google Scholar 

  4. Wheeler, A. R., Kim, C.-J., Loo, J. A. and Garrell, R. L. (2004). Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4833–4838.

    Article  CAS  Google Scholar 

  5. Thorsen, T., Maerkl, S. J. and Quake, S. R. (2002). Microfluidic large scale integration. Science 298, 580–584.

    Article  CAS  Google Scholar 

  6. Koch, M., Evans, A. and Brunnschweiler, A. (ed.) (2000). Microfluidic Technology and Applications. RSP, Baldock, Hertfordshire, England, pp. 227–237.

    Google Scholar 

  7. Shah, G. J., Pierstorff, E., Ho, D. and Kim, C.-J. (2007). Meniscus-assisted magnetic bead trapping on ewod-based digital microfluidics for specific protein localization. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) 2007, 707–710.

    Google Scholar 

  8. Lettieri, G.-L., Dodge, A., Boer, G., de Rooij, N. F. and Verpoorte, E. (2003). A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip 3, 34– 39.

    Article  CAS  Google Scholar 

  9. Verpoorte, E. (2003). Beads and chips: new recipes for analysis. Lab Chip 3, 60N-68N.

    Article  CAS  Google Scholar 

  10. Choi, J.-W., Oh, K. W., Thomas, J. H., Heineman, W. R., Brian Halsall, H., Nevin, J. H., Helmicki, A. J., Henderson, H. T., Ahn, C. H. (2002). An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2, 27–30.

    Article  CAS  Google Scholar 

  11. Sato, K., Tokeshi, M., Kimura, H., Kitamori, T (2001). Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoasay in a microchip for cancer diagnosis. Anal. Chem. 73, 1213–1218.

    Article  CAS  Google Scholar 

  12. Thomas, J. H., Kim, S. K., Hesketh, P. J., Halsall, H. B. and Heineman, W. R. (2004). Bead-based electrochemical immunoassay for bacteriophage MS2. Anal. Chem. 76, 2700–2707.

    Article  CAS  Google Scholar 

  13. Buranda, T., Huang, J., Perez-Luna, V. H., Schreyer, B., Sklar, L. A. and Lopez, G. P. (2002). Biomolecular recognition on well-characterized beads packed in microfluidic channels. Anal. Chem. 74, 1149–1156.

    Article  CAS  Google Scholar 

  14. Ali, M. F., Kirby, R., Goodey, A. P., Rodriguez, M. D., Ellington, A. D., Neikirk, D. P. and McDevitt, J. T. (2003). DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal. Chem. 75, 4732–4739.

    Article  CAS  Google Scholar 

  15. Gao, X. and Nie, S. (2004). Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal. Chem. 76, 2406–2410.

    Article  CAS  Google Scholar 

  16. Medoro, G., Manaresi, N., Leonardi, A., Altomare, L., Tartagni, M. and Guerrieri, R. (2003). A lab-on-a-chip for cell detection and manipulation. IEEE Sensors J. 3, 317–24.

    Article  CAS  Google Scholar 

  17. Yun, K.-S. and Yoon, E, (2005). Micro/nanofluidic device for single-cell-based assay. Biomed. Microdevices 7, 35–40.

    Article  CAS  Google Scholar 

  18. Kim, B.-G., Yun, K.-S. and Yoon, E. (2005). Active positioning control of single cell/microbead in a micro-well array chip by dielectrophoresis. Technical Digest of IEEE Int. Conf. on MEMS, pp. 702–705.

    Google Scholar 

  19. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y. F., Ohta, T., Yasuhara, M., Suzuki, K. and Yamamoto, K. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169.

    Article  CAS  Google Scholar 

  20. Chen, F., and Gerion, D. (2004). Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4, 1827–1832.

    Article  CAS  Google Scholar 

  21. Derfus, A. M., Chan, W. C. W. and Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18.

    Article  CAS  Google Scholar 

  22. Bruchez, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.

    Article  CAS  Google Scholar 

  23. Chan, C. W. and Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  CAS  Google Scholar 

  24. Yeh, H. C., Simone, E., Zhang, C. and Wang, T.-H. (2004). Single bio-molecule detection with quantum dots in a microchannel. IEEE Int. Conf. on MEMS, pp. 371–374.

    Google Scholar 

  25. Bakalova, R., Zhelev, Z., Ohba, H. and Baba, Y. (2005). Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc. 127, 9328–9329

    Article  CAS  Google Scholar 

  26. Zhelev, Z., Bakalova, R., Ohba, H., Imai, Y. and Baba, Y. (2006). Uncoated, broad fluorescent, and size-homogeneous CdSe quantum dots for bioanalyses. Anal. Chem. 78, 321–330.

    Article  CAS  Google Scholar 

  27. Sun, B., Xie, W., Yi, G., Chen, D., Zhou, Y. and Cheng, J. (2001). Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods 129, 85–89.

    Article  Google Scholar 

  28. Goldman, E. R., Balighian, E. D., Mattoussi, H., Kuno, M. K., Mauro, J. M., Tran, P. T. and Anderson, G. P. (2002). Avidin: a natural bridge for quantum dot antibody conjugates. J. Am. Chem. Soc. 124, 6378–6382.

    Article  CAS  Google Scholar 

  29. Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T. and Mauro, J. M. (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847.

    Article  CAS  Google Scholar 

  30. Goldman, E. R., Clapp, A. R., Anderson, G. P., Uyeda, H. T., Mauro, J. M., Medintz, I. L. and Mattoussi, H. (2004). Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688.

    Article  CAS  Google Scholar 

  31. Yun, K.-S., Lee, D., Kim, M. S., Kim, H.-S., Lee, G. M. and Yoon, E. (2004). High-throughput bio-molecule detection using microbead-based assay with quantum dot fluorescence in a microfluidic chip. Proceedings of the International Conference on Miniaturized Systems for Chemistry and Life Sciences (Micro TAS’04), pp. 222–224.

    Google Scholar 

  32. Yun, K.-S., Lee, D., Kim, H.-S. and Yoon, E. (2006). A microfluidic chip for measurement of bio molecules using microbead-based quantum dot fluorescence assay. Meas. Sci. Technol. 17, 3178–3183.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Intelligent Microsystems Program (IMP) of KIST under the “21C Frontier R&D program” and a research grant from Sogang University in 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Seok Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yun, KS., Lee, D., Kim, HS., Yoon, E. (2009). Microfluidic Chips Designed for Measuring Biomolecules Through a Microbead-Based Quantum Dot Fluorescence Assay. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics