Skip to main content

Determining DNA Sequence Specificity of Natural and Artificial Transcription Factors by Cognate Site Identifier Analysis

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Artificial transcription factors (ATFs) are designed to mimic natural transcription factors in the control of gene expression and are comprised of domains for DNA binding and gene regulation. ATF domains are modular, interchangeable, and can be composed of protein-based or nonpeptidic moieties, yielding DNA-interacting regulatory molecules that can either activate or inhibit transcription. Sequence-specific targeting is a key determinant in ATF activity, and DNA-binding domains such as natural zinc fingers and synthetic polyamides have emerged as useful DNA targeting molecules. Defining the comprehensive DNA binding specificity of these targeting molecules for accurate manipulations of the genome can be achieved using cognate site identifier DNA microarrays to explore the entire sequence space of binding sites. Design of ATFs that regulate gene expression with temporal control will generate important molecular tools to probe cell- and tissue-specific gene regulation and to function as potential therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren B., Robert F., Wyrick J.J., Aparicio O., Jennings E.G., Simon I., Zeitlinger J., Schreiber J., Hannett N., Kanin E., Volkert T.L., Wilson C.J., Bell S.P., and Young R.A. (2000). Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  CAS  Google Scholar 

  2. Venter J.C., et al (2001). The sequence of the human genome. Science 291, 1304–1351.

    Article  CAS  Google Scholar 

  3. Wells J., Graveel C.R., Bartley S.M., Madore S.J., and Farnham P.J. (2002). The identification of E2F1-specific target genes. Proc. Natl Acad. Sci. U. S. A. 99, 3890–3895.

    Article  CAS  Google Scholar 

  4. Horak C.E., Mahajan M.C., Luscombe N.M., Gerstein M., Weissman S.M., and Snyder M. (2002). GATA-1 binding sites mapped in the beta-globin locus by using mammalian ChIP-chip analysis. Proc. Natl Acad. Sci. U. S. A. 99, 2924–2929.

    Article  CAS  Google Scholar 

  5. Martone R., Euskirchen G., Bertone P., Hartman S., Royce T.E., Luscombe N.M., Rinn J.L., Nelson F.K., Miller P., Gerstein M., Weissman S., and Snyder M. (2003). Distribution of NF-kappaB-binding sites across human chromosome 22. Proc. Natl Acad. Sci. U. S. A. 100, 12247–12252.

    Article  CAS  Google Scholar 

  6. Wei C.L., Wu Q., Vega V.B., Chiu K.P., Ng P., Zhang T., Shahab A., Yong H.C., Fu Y., Weng Z., Liu J., Zhao X.D., Chew J.L., Lee Y.L., Kuznetsov V.A., Sung W.K., Miller L.D., Lim B., Liu E.T., Yu Q., Ng H.H., and Ruan Y. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219.

    Article  CAS  Google Scholar 

  7. Ansari A.Z., and Mapp A.K. (2002). Modular design of artificial transcription factors. Curr. Opin. Chem. Biol. 6, 765–772.

    Article  CAS  Google Scholar 

  8. Mapp A.K., and Ansari A.Z. (2007). A TAD further: exogenous control of gene activation. ACS Chem. Biol. 2, 62–75.

    Article  CAS  Google Scholar 

  9. Mapp A.K., Ansari A.Z., Ptashne M., and Dervan P.B. (2000). Activation of gene expression by small molecule transcription factors. Proc. Natl Acad. Sci. U. S. A. 97, 3930–3935.

    Article  CAS  Google Scholar 

  10. Ptashne M., and Gann A. (2001). Genes & Signals. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  11. Gerber H.P., Seipel K., Georgiev O., Hofferer M., Hug M., Rusconi S., and Schaffner W. (1994). Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811.

    Article  CAS  Google Scholar 

  12. Courey A.J., Holtzman D.A., Jackson S.P., and Tjian R. (1989). Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59, 827–836.

    Article  CAS  Google Scholar 

  13. Mermod N., O’Neill E.A., Kelly T.J., and Tjian R. (1989). The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58, 741–753.

    Article  CAS  Google Scholar 

  14. Saha S., Brickman J.M., Lehming N., and Ptashne M. (1993). New eukaryotic transcriptional repressors. Nature 363, 648–652.

    Article  CAS  Google Scholar 

  15. Mandell J.G., and Barbas C.F., III (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523.

    Article  CAS  Google Scholar 

  16. Beerli R.R., and Barbas C.F., III (2002). Engineering polydactyl zinc-finger transcription factors. Nat. Biotech. 20, 135–141.

    Article  CAS  Google Scholar 

  17. Isalan M., Klug A., and Choo Y. (2001). A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotech. 19, 656–660.

    Article  CAS  Google Scholar 

  18. Dervan P.B., and Edelson B.S. (2003). Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr. Opin. Struct. Biol. 13, 284–299.

    Article  CAS  Google Scholar 

  19. Buchmueller K.L., Staples A.M., Howard C.M., Horick S.M., Uthe P.B., Le N.M., Cox K.K., Nguyen B., Pacheco K.A., Wilson W.D., and Lee M. (2005). Extending the language of DNA molecular recognition by polyamides: unexpected influence of imidazole and pyrrole arrangement on binding affinity and specificity. J. Am. Chem. Soc. 127, 742–750.

    Article  CAS  Google Scholar 

  20. Supekova L., Pezacki J.P., Su A.I., Loweth C.J., Riedl R., Geierstanger B., Schultz P.G., and Wemmer D.E. (2002). Genomic effects of polyamide/DNA interactions on mRNA expression. Chem. Biol. 9, 821–827.

    Article  CAS  Google Scholar 

  21. Warren C.L., Kratochvil N.C., Hauschild K.E., Foister S., Brezinski M.L., Dervan P.B., Phillips G.N., Jr., and Ansari A.Z. (2006). Defining the sequence-recognition profile of DNA-binding molecules. Proc.Natl Acad. Sci.U. S. A. 103, 867–872.

    Article  CAS  Google Scholar 

  22. Singh-Gasson S., Green R.D., Yue Y., Nelson C., Blattner F., Sussman M.R., and Cerrina F. (1999). Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotech. 17, 974–978.

    Article  CAS  Google Scholar 

  23. Mann R.S., and Chan S.K. (1996). Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 12, 258–262.

    Article  CAS  Google Scholar 

  24. Hauschild K.E., Metzler R.E., Arndt H.D., Moretti R., Raffaelle M., Dervan P.B., and Ansari A.Z. (2005). Temperature–sensitive protein–DNA dimerizers. Proc. Natl Acad. Sci. U. S. A. 102, 5008–5013.

    Article  CAS  Google Scholar 

  25. Arndt H.D., Hauschild K.E., Sullivan D.P., Lake K., Dervan P.B., and Ansari A.Z. (2003). Toward artificial developmental regulators. J. Am. Chem. Soc. 125, 13322–13323.

    Article  CAS  Google Scholar 

  26. Schneider T.D., and Stephens R.M. (1990). Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100.

    Article  CAS  Google Scholar 

  27. Bailey T.L., and Elkan C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36.

    CAS  Google Scholar 

  28. Liu X.S., Brutlag D.L., and Liu J.S. (2002). An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotech. 20, 835–839.

    CAS  Google Scholar 

  29. Guex N., and Peitsch M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  CAS  Google Scholar 

  30. Humphrey W., Dalke A., and Schulten K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–38.

    Article  CAS  Google Scholar 

  31. Stafford R.L., and Dervan P.B. (2007). The reach of linear protein-DNA dimerizers. J. Am. Chem. Soc. 129, 14026–14033.

    Article  CAS  Google Scholar 

  32. Smyth G.K., and Speed T. (2003). Normalization of cDNA microarray data. Methods 31, 265–273.

    Article  CAS  Google Scholar 

  33. Quackenbush J. (2002). Microarray data normalization and transformation. Nat. Gen. 32 Suppl, 496–501.

    Article  CAS  Google Scholar 

  34. Yang Y.H., Dudoit S., Luu P., Lin D.M., Peng V., Ngai J., and Speed T.P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15.

    Article  Google Scholar 

  35. Colantuoni C., Henry G., Zeger S., and Pevsner J. (2002). Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. BioTechniques 32, 1316–1320.

    CAS  Google Scholar 

  36. Dixon W. (1950). Analysis of extreme values. Ann. Math. Stat. 21, 488–506.

    Article  Google Scholar 

  37. Rorabacher D. (1991) Statistical treatment for rejection of deviant values: critical values of Dixon Q parameter and related subrange ratios at the 95 percent confidence level. Anal. Chem. 83, 139–146.

    Article  Google Scholar 

  38. Bolstad B.M., Irizarry R.A., Astrand M., and Speed T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193.

    Article  CAS  Google Scholar 

  39. Adbi H. (2007). Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage.

    Google Scholar 

  40. Wurtz N.R., Turner J.M., Baird E.E., and Dervan P.B. (2001). Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org. Lett. 3, 1201–1203.

    Article  CAS  Google Scholar 

  41. White S., Szewczyk J.W., Turner J.M., Baird E.E., and Dervan P.B. (1998). Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391, 468–471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Karl Hauschild and Clayton Carlson for reviewing the manuscript and Laura Vanderploeg for help with figures. This work was supported by the National Institutes of Health grant R01 GM069420 to (AZA), University of Wisconsin Innovation and Economic Development Research Program (AZA and MSO), National Foundation—March of Dimes (AZA), US Department of Agriculture—Hatch/McIntire/Stennis grant (AZA), the Greater Milwaukee Foundation—Shaw Scientist Award (AZA), and Computation and Informatics in Biology and Medicine Training Grant T15LM007359 (CLW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary S. Ozers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ozers, M.S., Warren, C.L., Ansari, A.Z. (2009). Determining DNA Sequence Specificity of Natural and Artificial Transcription Factors by Cognate Site Identifier Analysis. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_41

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics