Skip to main content

Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kandavelou, K., M. Mani, S. Durai, and S. Chandrasegaran. (2005). “Magic” scissors for genome surgery. Nat Biotechnol 23:686–687.

    Article  CAS  Google Scholar 

  2. Wu, J., K. Kandavelou, and S. Chandrasegaran. (2007). Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci 64:2933–2944.

    Article  CAS  Google Scholar 

  3. Vasquez, K.M., K. Marburger, Z. Intody, and J.H. Wilson. (2001). Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98:8403–8410.

    Article  CAS  Google Scholar 

  4. Kim, C.A., and J.M. Berg. (1996). A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol 3:940–945.

    Article  CAS  Google Scholar 

  5. Pavletich, N.P., and C.O. Pabo. (1991). Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817.

    Article  CAS  Google Scholar 

  6. Desjarlais, J.R., and J.M. Berg. (1993). Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 90:2256–2260.

    Article  CAS  Google Scholar 

  7. Shi, Y., and J.M. Berg. (1995). A direct comparison of the properties of natural and designed zinc-finger proteins. Chem Biol 2:83–89.

    Article  CAS  Google Scholar 

  8. Beerli, R.R., D.J. Segal, B. Dreier, and C.F. Barbas, III. (1998). Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95:14628–14633.

    Article  CAS  Google Scholar 

  9. Kim, J.S., and C.O. Pabo. (1998). Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc Natl Acad Sci U S A 95:2812–2817.

    Article  CAS  Google Scholar 

  10. Liu, Q., D.J. Segal, J.B. Ghiara, and C.F. Barbas, III. (1997). Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94:5525–5530.

    Article  CAS  Google Scholar 

  11. Chandrasegaran, S., and J. Smith. (1999). Chimeric restriction enzymes: what is next? Biol Chem 380:841–848.

    Article  CAS  Google Scholar 

  12. Kandavelou, K., Mani, M., Durai, S., and Chandrasegaran, S. (2004). Engineering and applications of chimeric nucleases. Springer, Berlin. pp. 413–414.

    Google Scholar 

  13. Kim, Y.G., J. Cha, and S. Chandrasegaran. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160.

    Article  CAS  Google Scholar 

  14. Smith, J., J.M. Berg, and S. Chandrasegaran. (1999). A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res 27:674–681.

    Article  CAS  Google Scholar 

  15. Porteus, M.H., and D. Baltimore. (2003). Chimeric nucleases stimulate gene targeting in human cells. Science 300:763.

    Article  Google Scholar 

  16. Urnov, F.D., J.C. Miller, Y.L. Lee, C.M. Beausejour, J.M. Rock, S. Augustus, A.C. Jamieson, M.H. Porteus, P.D. Gregory, and M.C. Holmes. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651.

    Article  CAS  Google Scholar 

  17. Wright, D.A., J.A. Townsend, R.J. Winfrey, Jr., P.A. Irwin, J. Rajagopal, P.M. Lonosky, B.D. Hall, M.D. Jondle, and D.F. Voytas. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705.

    Article  CAS  Google Scholar 

  18. Lloyd, A., C.L. Plaisier, D. Carroll, and G.N. Drews. (2005). Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237.

    Article  CAS  Google Scholar 

  19. Carroll, D., J.J. Morton, K.J. Beumer, and D.J. Segal. (2006). Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341.

    Article  CAS  Google Scholar 

  20. Wright, D.A., S. Thibodeau-Beganny, J.D. Sander, R.J. Winfrey, A.S. Hirsh, M. Eichtinger, F. Fu, M.H. Porteus, D. Dobbs, D.F. Voytas, and J.K. Joung. (2006). Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652.

    Article  Google Scholar 

  21. Smith, J., M. Bibikova, F.G. Whitby, A.R. Reddy, S. Chandrasegaran, and D. Carroll. (2000). Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369.

    Article  CAS  Google Scholar 

  22. Mandell, J.G., and C.F. Barbas, III. (2006). Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523.

    Article  CAS  Google Scholar 

  23. Liu, P.Q., E.J. Rebar, L. Zhang, Q. Liu, A.C. Jamieson, Y. Liang, H. Qi, P.X. Li, B. Chen, M.C. Mendel, X. Zhong, Y.L. Lee, S.P. Eisenberg, S.K. Spratt, C.C. Case, and A.P. Wolffe. (2001). Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 276:11323–11334.

    Article  CAS  Google Scholar 

  24. Liu, Q., Z. Xia, X. Zhong, and C.C. Case. (2002). Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277:3850–3856.

    Article  CAS  Google Scholar 

  25. Dreier, B., R.R. Beerli, D.J. Segal, J.D. Flippin, and C.F. Barbas, III. (2001). Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276:29466–29478.

    Article  CAS  Google Scholar 

  26. Zhang, L., S.K. Spratt, Q. Liu, B. Johnstone, H. Qi, E.E. Raschke, A.C. Jamieson, E.J. Rebar, A.P. Wolffe, and C.C. Case. (2000). Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275:33850–33860.

    Article  CAS  Google Scholar 

  27. Mani, M., K. Kandavelou, F.J. Dy, S. Durai, and S. Chandrasegaran. (2005). Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun 335:447–457.

    Article  CAS  Google Scholar 

  28. Ruminy, P., C. Derambure, S. Chandrasegaran, and J.P. Salier. (2001). Long-range identification of hepatocyte nuclear factor-3 (FoxA) high and low-affinity binding sites with a chimeric nuclease. J Mol Biol 310:523–535.

    Article  CAS  Google Scholar 

  29. Bibikova, M., D. Carroll, D.J. Segal, J.K. Trautman, J. Smith, Y.G. Kim, and S. Chandrasegaran. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297.

    Article  CAS  Google Scholar 

  30. Bibikova, M., K. Beumer, J.K. Trautman, and D. Carroll. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300:764.

    Article  CAS  Google Scholar 

  31. Bibikova, M., M. Golic, K.G. Golic, and D. Carroll. (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175.

    CAS  Google Scholar 

  32. Morton, J., M.W. Davis, E.M. Jorgensen, and D. Carroll. (2006). Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103:16370–16375.

    Article  CAS  Google Scholar 

  33. Alwin, S., M.B. Gere, E. Guhl, K. Effertz, C.F. Barbas, III, D.J. Segal, M.D. Weitzman, and T. Cathomen. (2005). Custom zinc-finger nucleases for use in human cells. Mol Ther 12:610–617.

    Article  CAS  Google Scholar 

  34. Beumer, K., G. Bhattacharyya, M. Bibikova, J.K. Trautman, and D. Carroll. (2006). Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–2403.

    Article  CAS  Google Scholar 

  35. Porteus, M.H. (2006). Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446.

    Article  CAS  Google Scholar 

  36. Moehle, E.A., J.M. Rock, Y.L. Lee, Y. Jouvenot, R.C. DeKelver, P.D. Gregory, F.D. Urnov, and M.C. Holmes. (2007). Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060.

    Article  CAS  Google Scholar 

  37. Porteus, M.H., and D. Carroll. (2005). Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973.

    Article  CAS  Google Scholar 

  38. Wilson, J.H. (2003). Pointing fingers at the limiting step in gene targeting. Nat Biotechnol 21:759–760.

    Article  CAS  Google Scholar 

  39. Porteus, M.H., J.P. Connelly, and S.M. Pruett. (2006). A look to future directions in gene therapy research for monogenic diseases. PLoS Genet 2:e133.

    Article  Google Scholar 

  40. Miller, J.C., M.C. Holmes, J. Wang, D.Y. Guschin, Y.L. Lee, I. Rupniewski, C.M. Beausejour, A.J. Waite, N.S. Wang, K.A. Kim, P.D. Gregory, C.O. Pabo, and E.J. Rebar. (2007). An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785.

    Article  CAS  Google Scholar 

  41. Szczepek, M., V. Brondani, J. Buchel, L. Serrano, D.J. Segal, and T. Cathomen. (2007). Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sundar Durai for drawing the figures. The research on ZFNs in our lab has been supported by various grants from National Institutes of Health, USA, during the past 13 years; it is currently being funded by the research grant GM077291 from NIGMS/NIH. Our work on ZFN-mediated gene targeting in human stem cells is partially supported by a grant from the Maryland Stem Cell Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Chandrasegaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kandavelou, K., Chandrasegaran, S. (2009). Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_40

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics