Skip to main content

Nanoparticle-Mediated Gene Delivery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Nonviral gene delivery has been gaining considerable attention recently. Although the efficacy of DNA transfection, which is a major concern, is low in nonviral vector-mediated gene transfer compared with viral ones, nonviral vectors are relatively easy to prepare, less immunogenic and oncogenic, and have no potential of virus recombination and no limitation on the size of a transferred gene. The ability to incorporate genetic materials such as plasmid DNA, RNA, and siRNA into functionalized nanoparticles with little toxicity demonstrates a new era in pharmacotherapy for delivering genes selectively to tissues and cells. In this chapter, we highlight the basic concepts and applications of nonviral gene delivery using super paramagnetic iron oxide nanoparticles and functionalized silica nanoparticles. The experimental protocols related to these topics are described in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tan, W., et al, Bionanotechnology based on silica nanoparticles. Med Res Rev, 2004. 24(5): p. 621–38.

    Article  Google Scholar 

  2. Roy, I., et al, Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A, 2005. 102(2): p. 279–84.

    Article  Google Scholar 

  3. Singh, M., et al, Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci U S A, 2000. 97(2): p. 811–6.

    Article  Google Scholar 

  4. Bharali, D.J., et al, Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A, 2005. 102(32): p. 11539–44.

    Article  Google Scholar 

  5. Nomura, T., et al, Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res, 1998. 15(1): p. 128–32.

    Article  Google Scholar 

  6. Cuenca, A.G., et al, Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006. 107(3): p. 459–66.

    Article  Google Scholar 

  7. Kaul, G. and M. Amiji, Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J Pharm Sci, 2005. 94(1): p. 184–98.

    Article  Google Scholar 

  8. Kaul, G. and M. Amiji, Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res, 2005. 22(6): p. 951–61.

    Article  Google Scholar 

  9. Kneuer, C., et al, A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem, 2000. 11(6): p. 926–32.

    Article  Google Scholar 

  10. Kneuer, C., et al, Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int J Pharm, 2000. 196(2): p. 257–61.

    Article  Google Scholar 

  11. Mondalek, F.G., et al, The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J Nanobiotechnology, 2006. 4: p. 4.

    Article  Google Scholar 

  12. Jin, S. and K. Ye, Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog, 2007. 23(1): p. 32–41.

    Article  Google Scholar 

  13. Morishita, N., et al, Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun, 2005. 334(4): p. 1121–6.

    Article  Google Scholar 

  14. Prow, T., et al, Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis, 2006. 12: p. 606–15.

    Google Scholar 

  15. Pan, B., et al, Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res, 2007. 67(17): p. 8156–8163.

    Article  Google Scholar 

  16. Reszka, R., Zhu, J.H., Weber, F., Liposome mediated transfer of marker and cytokine genes into rat and human Glioblastoma cells in vitro and in vivo. J Lipsome Res., 1995. 5: p. 149–154.

    Google Scholar 

  17. Junghans, M., J. Kreuter, and A. Zimmer, Antisense delivery using protamine-oligonucleotide particles. Nucleic Acids Res, 2000. 28(10): p. E45.

    Article  Google Scholar 

  18. Schwab, G., et al, Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci U S A, 1994. 91(22): p. 10460–4.

    Article  Google Scholar 

  19. Erbacher, P., et al, Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res, 1998. 15(9): p. 1332–9.

    Article  Google Scholar 

  20. He, X., Wang, K., Tan, W., Liu, B., Liu, X., Huang, S., Li, D., He, C., Li, J., A novel gene carrier based on amino-modified silica nanoparticles. Chinese Science Bulletin, 2003. 48(3): p. 223–228.

    Google Scholar 

  21. Barnes, A.L., et al, Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. Biomagn Res Technol, 2007. 5: p. 1.

    Article  Google Scholar 

  22. Fukuda, Y., et al, Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci, 2006. 5(4): p. 191–6.

    Article  Google Scholar 

  23. Savranoglu, P., et al, The role of SPIO-enhanced MRI in the detection of malignant liver lesions. Clin Imaging, 2006. 30(6): p. 377–81.

    Article  Google Scholar 

  24. Mack, M.G., et al, Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology, 2002. 222(1): p. 239–44.

    Google Scholar 

  25. Luo, D. and W.M. Saltzman, Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol, 2000. 18(8): p. 893–5.

    Article  Google Scholar 

  26. Luo, D., et al, A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release, 2004. 95(2): p. 333–41.

    Article  Google Scholar 

  27. Roy, I., et al, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc, 2003. 125(26): p. 7860–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jin, S., Leach, J.C., Ye, K. (2009). Nanoparticle-Mediated Gene Delivery. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics