Skip to main content

Raman-Assisted X-Ray Crystallography for the Analysis of Biomolecules

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

In this chapter, we describe Raman microspectrophotometry applied to crystals of biomolecules. Raman spectra collected in crystallo provide structural information highly complementary to X-ray diffraction, relate the crystalline state to the solution state, and allow the identification of ligand-bound or intermediate states of macromolecules. Nonresonant Raman spectroscopy is particularly suitable to the study of macromolecular crystals, and therefore applies to a wide range of noncolored crystalline proteins. Practical issues related to the investigation of crystals by Raman microspectrophotometry are reviewed, and the current limitations are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadfield, A. and Hajdu, J. (1993). A fast and portable microspectrophotometer for protein crystallography, J. Appl. Cryst.. 26, 839–842.

    Article  CAS  Google Scholar 

  2. Chen, Y., Srajer, V., Ng, K., Legrand, A. and Moffat, K. (1994). Optical monitoring of protein crystals in time-resolved X-ray experiments: microspectrophotometer design and performance, Rev. Sci. Instrum. 65, 1506–1511.

    Article  CAS  Google Scholar 

  3. Bourgeois, D., Vernede, X., Adam, V., Fioravanti, E. and Ursby, T. (2002). A microspectrophotometer for absorption and fluorescence studies of protein crystals, J. Appl. Cryst. 35, 319–326.

    Article  CAS  Google Scholar 

  4. Sakai, K., Matsui, Y., Kouyama, T., Shiro, Y. and Adachi, S. (2002). Optical monitoring of freeze-trapped reaction intermediates in protein crystals: a microspectro-photometer for cryogenic protein crystallography, J. Appl. Cryst. 35, 270–273.

    Article  CAS  Google Scholar 

  5. Klink, B. U., Goody, R. S. and Scheidig, A. J. (2006). A newly designed microspectrofluorometer for kinetic studies on protein crystals in combination with X-ray diffraction, Biophys. J. 91, 981–992.

    Article  CAS  Google Scholar 

  6. Royant, A., Carpentier, P., Ohana, J., McGeehan, J., Paetzold, B., Noirclerc-Savoye, M., Vernede, X., Adam, V. and Bourgeois, D. (2007). Advances in spectroscopic methods for biological crystals. Part 1. Fluorescence lifetime measurements, J. Appl. Crystallogr. 40, 1105–1112.

    Article  CAS  Google Scholar 

  7. Berglund, G. I., Carlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A. and Hajdu, J., (2002). The catalytic pathway of horseradish peroxidase at high resolution, Nature. 417, 463–468.

    Article  CAS  Google Scholar 

  8. Kuhnel, K., Derat, E., Terner, J., Shaik, S. and Schlichting, I. (2007). Structure and quantum chemical characterization of chloroperoxidase compound 0, a common reaction intermediate of diverse heme enzymes, Proc. Natl Acad. Sci. U. S. A. 104, 99–104.

    Article  Google Scholar 

  9. Wilmot, C. M., Sjogren, T., Carlsson, G. H., Berglund, G. I. and Hajdu, J. (2002). Defining redox state of X-ray crystal structures by single-crystal ultraviolet-visible microspectrophotometry, Methods Enzymol. 353, 301–318.

    Article  CAS  Google Scholar 

  10. Adam, V., Royant, A., Niviere, V., Molina-Heredia, F. P. and Bourgeois, D. (2004). Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction, Structure (Camb) 12, 1729–1740.

    Article  CAS  Google Scholar 

  11. Beitlich, T., Kuhnel, K., Schulze-Briese, C., Shoeman, R. L. and Schlichting, I. (2007). Cryoradiolytic reduction of crystalline heme proteins: analysis by UV–Vis spectroscopy and X-ray crystallography, J. Synchrotron Radiat. 14, 11–23.

    Article  CAS  Google Scholar 

  12. Pearson, A. R., Mozzarelli, A. and Rossi, G. L. (2004). Microspectrophotometry for structural enzymology, Curr. Opin. Struct. Biol. 14, 656–662.

    Article  CAS  Google Scholar 

  13. Weik, M., Vernede, X., Royant, A. and Bourgeois, D. (2004). Temperature derivative fluore-scence spectroscopy as a tool to study dynamical changes in protein crystals, Biophys. J. 86, 3176–3185.

    Article  CAS  Google Scholar 

  14. Pascal, A. A., Liu, Z., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W. and Ruban, A. (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature 436, 134–137.

    Article  CAS  Google Scholar 

  15. Sage, J. T. and Jee, W. (1997). Structural characterization of the myoglobin active site using infrared crystallography, J. Mol. Biol. 274, 21–26.

    Article  CAS  Google Scholar 

  16. Zhu, L., Sage, J. T. and Champion, P. M. (1993). Quantitative structural comparisons of heme protein crystals and solutions using resonance Raman spectroscopy, Biochemistry 32, 11181–11185.

    Article  CAS  Google Scholar 

  17. Carey, P. R. and Dong, J. (2004). Following ligand binding and ligand reactions in proteins via Raman crystallography, Biochemistry 43, 8885–8893.

    Article  CAS  Google Scholar 

  18. Smulevich, G., Wang, Y., Mauro, J. M., Wang, J. M., Fishel, L. A., Kraut, J. and Spiro, T. G.(1990). Single-crystal resonance Raman spectroscopy of site-directed mutants of cytochrome c peroxidase, Biochemistry 29, 7174–7180.

    Article  CAS  Google Scholar 

  19. Davies, R. J., Burghammer, M. and Riekel, C. (2005). Simultaneous microRaman and syn­chrotron radiation microdiffraction: tools for materials characterization, Appl. Phys. Lett. 82, 264105.

    Article  Google Scholar 

  20. Briois, V., Vantelon, D., Villain, F., Couzinet, B., Flank, A. M. and Lagarde, P. (2007). Combining two structural techniques on the micrometer scale: micro-XAS and micro-Raman spectroscopy, J. Synchrotron Radiat. 14, 403–408.

    Article  CAS  Google Scholar 

  21. Boccaleri, E., Carniato, F., Croce, G., Viterbo, D., van Beek, W., Emerich, H. and Milanesio, M. (2007). In situ simultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions, J. Appl. Cryst. 40, 684–693.

    Article  CAS  Google Scholar 

  22. Carpentier, P., Royant, A., Ohana, J. and Bourgeois, D. (2007). Advances in spectroscopic methods for biological crystals. Part 2.Raman spectroscopy, J. Appl. Cryst. 40, 1113–1122.

    Article  CAS  Google Scholar 

  23. Katona, G., Carpentier, P., Niviere, V., Amara, P., Adam, V., Ohana, J., Tsanov, N. and Bourgeois, D. (2007). Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme, Science 316, 449–453.

    Article  CAS  Google Scholar 

  24. McGeehan, J., Carpentier, P., Royant, A., Bourgeois, D. and Ravelli, R. B. (2007). X-ray radiation-induced damage in DNA monitored by online Raman, J. Synchrotron Radiat. 14, 99–108.

    Article  CAS  Google Scholar 

  25. Halle, B. (2004). Biomolecular cryocrystallography: structural changes during flash-cooling, Proc. Natl Acad. Sci. U. S. A. 101, 4793–4798.

    Article  CAS  Google Scholar 

  26. Helfand, M. S., Totir, M. A., Carey, M. P., Hujer, A. M., Bonomo, R. A. and Carey, P. R. (2003). Following the reactions of mechanism-based inhibitors with beta-lactamase by Raman crystallography, Biochemistry 42, 13386–13392.

    Article  Google Scholar 

  27. Smulevich, G., Wang, Y., Edwards, S. L., Poulos, T. L., English, A. M. and Spiro, T. G. (1990). Resonance Raman spectroscopy of cytochrome c peroxidase single crystals on a variable-temperature microscope stage, Biochemistry 29, 2586–2592.

    Article  CAS  Google Scholar 

  28. Kudryavtsev, A. B., Mirov, S. B., DeLucas, L. J., Nicolete, C., van der Woerd, M., Bray, T. L. and Basiev, T. T. (1998). Polarized Raman spectroscopic studies of tetragonal lysozyme single crystals, Acta Crystallogr. D Biol. Crystallogr. 54, 1216–1229.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the European Mole­cular Biology Organisation (EMBO), the European Synchrotron Radiation Facility (Grenoble, France), “Ministère de l’Enseignement et de la Recherche,” and the “Région Rhônes-Alpes” (France, CPER and CIBLE contracts). Contributions by Antoine Royant, Vincent Nivière, Jeremy Ohana, David Annequin, and Michel Belleil are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bourgeois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bourgeois, D., Katona, G., de Rosny, E., Carpentier, P. (2009). Raman-Assisted X-Ray Crystallography for the Analysis of Biomolecules. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics