Skip to main content

Analysis of Biomolecules Using Surface Plasmons

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Surface plasmon resonance (SPR) biosensors are optical sensors that use special electromagnetic waves (surface plasmon-polaritons) to probe interactions between an analyte in solution and a biomolecular recognition element immobilized on the SPR sensor surface. Major application areas include the detection of biological analytes and analysis of biomolecular interactions, where SPR biosensors provide benefits of label-free real-time analytical technology. The information obtained is both qualitative and quantitative and it is possible to obtain the kinetic parameters of the interaction. This new technology has been used to study a diverse set of interaction partners of biological interest, such as protein–protein, protein–lipids, protein–nucleic acids, or protein and low molecular weight molecules such as drugs, substrates, and cofactors. In addition to basic biomedical research, the SPR biosensor has recently been used in food analysis, proteomics, immunogenicity, and drug discovery. This chapter reviews the major developments in SPR technology. The main application areas are outlined and examples of applications of SPR sensor technology are presented. Future prospects of SPR sensor technology are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ritchie, R. H. (1957). Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881

    Article  CAS  Google Scholar 

  2. Burstein, E. (1974). Polaritons (Burstein, E. and De Martini, F., eds.). 1–4 Pergamon, New York

    Google Scholar 

  3. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., and Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670

    Article  CAS  Google Scholar 

  4. Nie, S. M. and Emery, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275, 1102–1106

    Article  CAS  Google Scholar 

  5. Ghindilis, A. L., Atanasov, P., Wilkins, M., and Wilkins, E. (1998). Immunosensors: Electrochemical sensing and other engineering approaches. Biosens. Bioelectron. 13, 113–131

    Article  CAS  Google Scholar 

  6. Chu, X., Lin, Z. H., Shen, G. L., and Yu, R. Q. M. (1995). Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst. 120, 2829–2832

    Article  CAS  Google Scholar 

  7. Gauglitz, G. (1996). Opto-chemical and opto-immuno sensors, Sensor Update, Vol 1. VCH, Weinheim

    Google Scholar 

  8. Rowe-Taitt, C. A., Hazzard, J. W., Hoffman, K. E., Cras, J. J., Golden, J. P., and Ligler, F. S. (2000). Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens. Bioelectron. 15, 579–589

    Article  CAS  Google Scholar 

  9. Piehler, J., Brecht, A., and Gauglitz, G. (1996). Affinity detection of low molecular weight analytes. Anal. Chem. 68, 139–143

    Article  CAS  Google Scholar 

  10. Heideman, R. G., Kooyman, R. P. H., and Greve, J. (1993). Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sens. Actuators B 10, 209–217

    Article  CAS  Google Scholar 

  11. Clerc, D. and Lukosz, W. (1994). Integrated optical output grating coupler as biochemical sensor. Sens. Actuators B 19, 581–586

    Article  CAS  Google Scholar 

  12. Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J., and Goddard, N. J. (1993). The resonant mirror: a novel optical biosensor for direct sensing of biomolecular inter-actions part I: principle of operation and associated instrumentation. Biosens. Bioelectron. 8, 347–353

    Article  CAS  Google Scholar 

  13. Homola, J., Yee, S., and Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15

    Article  Google Scholar 

  14. Homola, J., Yee, S., and Myszka, D. (2002). Surface plasmon biosensors. In: Optical Biosensors: Present and Future (Ligler, F. S., and Taitt, C. R., eds.)., Elsevier, Amsterdam

    Google Scholar 

  15. Rabbany, S. Y., Lane, W. J., Marganski, W. A., Kusterbeck, A. W., and Ligler, F. S. (2000). Trace detection using a membrane-based displacement immunosassay. J. Immunol. Methods 246, 69–77

    Article  CAS  Google Scholar 

  16. Taton, T. A., Lu, G., Mirkin, C. A. (2001). Two-color labeling of oligonucleotide Arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc., 123, 5164–5165

    Article  CAS  Google Scholar 

  17. El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264

    Article  CAS  Google Scholar 

  18. Jensen, T. R., Malinsky, M. D., Haynes, C. L., Van Duyne, R. P. (2000). Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B, 104, 10549

    Article  CAS  Google Scholar 

  19. Schultz, S., Smith, D. R., Mock, J. J., Schultz, D. A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A., 97, 996

    Article  CAS  Google Scholar 

  20. Michaels, A. M., Nirmal, M., Brus, L. E. (1999). Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939

    Article  CAS  Google Scholar 

  21. Yguerabide, J. and Yguerabide, E. E. (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 157–176

    Article  CAS  Google Scholar 

  22. Yguerabide, J. and Yguerabide, E. E. (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 137–156

    Article  CAS  Google Scholar 

  23. Schatz, G. C. and Van Duyne, R. P. (2002). Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Vol. 1. Wiley: New York

    Google Scholar 

  24. Kelly, K. L., Coronado, E., Zhao, L., and Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668–677

    Article  CAS  Google Scholar 

  25. Kreibig, U., Gartz, M., and Hilger, A. (1997). Mie resonances. Sensors for physical and chemical cluster interface properties. Ber. Bunsen-Ges. 101, 1593–1604

    Article  CAS  Google Scholar 

  26. Link, S. and El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and vanorods. J. Phys. Chem. B. 103, 8410–8426

    Article  CAS  Google Scholar 

  27. Haynes, C. L. and Van Duyne, R. P.(2001). Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611

    Article  CAS  Google Scholar 

  28. Mulvaney, P. (2001). Not all that’s gold does glitter. MRS Bull. 26, 1009–1014

    Article  CAS  Google Scholar 

  29. Connolly, S., Cobbe, S., and Fitzmaurice, D. (2001). Effects of ligand-receptor geometry and stoichiometry on protein-induced aggregation of biotin-modified colloidal gold. J. Phys. Chem. B. 105, 2222–2226

    Article  CAS  Google Scholar 

  30. Storhoff, J. J., Lazarides, A. A., Mucic, R. C., Mirkin, C. A., Letsinger, R. L., and Schatz, G. C. (2000). What controls the optical properties of DNA-Linked gold nanoparticles assemblies. J. Am. Chem. Soc. 122, 4640–4650

    Article  CAS  Google Scholar 

  31. Henglein, A. and Meisel, D. (1998). Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles. J. Phys. Chem. B 102, 8364–8366

    Article  CAS  Google Scholar 

  32. McFarland, A. D. and Van Duyne, R. P. (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062

    Article  CAS  Google Scholar 

  33. Malinsky, M. D., Kelly, K. L., Schatz, G. C., and Van Duyne, R. P. (2000). Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482

    Article  CAS  Google Scholar 

  34. Nath, N. and Chilkoti, A. (2002). A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74, 504–509

    Article  CAS  Google Scholar 

  35. Riboh, J. C., Haes, A. J., McFarland, A. D., Yonzon, C. R., and Van Duyne, R. P. (2003). A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 107, 1772–1780

    Article  CAS  Google Scholar 

  36. Cao, Y. W., Jin, R. C., and Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA Detection. Science 297, 1536–1540

    Article  CAS  Google Scholar 

  37. Calander, N. and Willander, M. (2002). Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. J. Appl. Phys. 92, 4878. Nils Calander, N. and Willander, M. (2002). Optical trapping of single fluorescent molecules at the detection spot of nanoprobes. Phys. Rev. Lett. 89, 1436031–1436034

    Article  CAS  Google Scholar 

  38. Sambles, J. R., Bradbery, G. W., and Yang, F. Z. (1991). Optical-excitation of surface-plasmons - an introduction. Contemp. Phys. 32, 173–183

    Article  CAS  Google Scholar 

  39. Boardman, A. D. (1982). Electromagnetic surface modes. Wiley, Chichester

    Google Scholar 

  40. Barnes, W. L., Dereux, A., and Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature 424, 824–830

    Article  CAS  Google Scholar 

  41. Kretschmann, E. and Raether, H. (1968). Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136

    CAS  Google Scholar 

  42. Otto, A. (1968). Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398

    Article  CAS  Google Scholar 

  43. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y., and Pohl, D. W. (1996). Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892

    Article  CAS  Google Scholar 

  44. Ditlbacher, H., Krenn, J. R., Felidj, N., Lamprecht, B., Schider, G., Salerno, M., Leitner, A., and Aussenegg, F. R. (2002). Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406

    Article  CAS  Google Scholar 

  45. Ritchie, R. H., Arakawa, E. T., Cowan, J. J.&Hamm, R. N. (1968). Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533

    Article  CAS  Google Scholar 

  46. Raether, H. (1988). Surface Plasmons (Hohler, G., ed.)., Springer, Berlin

    Google Scholar 

  47. Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A., and Aussenegg, F. R. (2002). Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764

    Article  CAS  Google Scholar 

  48. Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, Roberts, P. J., and Allan, D. C. (1999). Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539

    Article  CAS  Google Scholar 

  49. Kitson, S. C., Barnes, W. L., and Sambles, J. R. (1996). A full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 77, 2670–2673

    Article  CAS  Google Scholar 

  50. Barnes, W. L., Preist, T. W., Kitson, S. C., and Sambles, J. R. (1996). Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227–6244

    Article  CAS  Google Scholar 

  51. Barnes, W. L., Kitson, S. C., Preist, T. W., and Sambles, J. R. (1997). Photonic surfaces for surface plasmons polaritons. J. Opt. Soc. Am. A 14, 1654–1661

    Article  Google Scholar 

  52. Kreibig, U. and Vollmer, M. (1995). Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  53. Haynes, C. L. and Van Duyne, R. P. (2001). Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611

    Article  CAS  Google Scholar 

  54. Sonnichsen, C., Geier, S., Hecker, N. E., von Plessen, G., Feldmann, J., Ditlbacher, H., Lamprecht, B., Krenn, J. R., Aussenegg, F. R., Chan, V. Z.-H., Spatz, J. P., and Moller, M. (2000). Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77, 2949–2951

    Article  CAS  Google Scholar 

  55. Schultz, D. A. (2003). Plasmon resonant particles for biological detection. Curr. Opin. Biotechnol. 14, 13–22

    Article  CAS  Google Scholar 

  56. Oldenburg, S. J., Genick, C. C., Clark, K. A., and Schultz, D. A. (2002). Base pair mismatch recognition using plasmon resonant particle labels. Anal. Biochem. 309, 109–116

    Article  CAS  Google Scholar 

  57. Félidj, N., Aubard, J., Levi, G., Krenn, J. R., Hohenau, A., Schider, G., Leitner, A., and Aussenegg, F. R. (2003). Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097

    Article  CAS  Google Scholar 

  58. Levi, S., Mourran, A., Spatz, J. P., Veggel van, F., Reinhoudt, D., and Moller, M. (2002). Fluorescence of dyes adsorbed on highly organized, nanostructured gold surfaces. Chem. Eur. J. 8, 3808–3814

    Article  CAS  Google Scholar 

  59. Vargas-Baca, I., Brown, A. P., Andrews, M. P., Galstian, T., Li, Y., Vali, H., and Kuzyk, M. G. (2002). Linear and nonlinear optical responses of a dye anchored to gold nanoparticles dispersed in liquid and polymeric matrixes. Can. J. Chem. 80, 1625–1633

    Article  CAS  Google Scholar 

  60. Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B., and Aussenegg, F. R. (2003). Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141

    Article  CAS  Google Scholar 

  61. Kottmann, J. P. and Martin, O. J. F. (2001). Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett. 26, 1096–1098

    Article  CAS  Google Scholar 

  62. García-Vidal, F. J. and Pendry, J. B. (1996). Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166

    Article  Google Scholar 

  63. Gresillon, S., Aigouy, L., Boccara, A. C., Rivoal, J. C., Quelin, X., Desmarest, C., Gadenne, P., Shubin, V. A., Sarychev, A. K., and Shalaev, V. M. (1999). Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523

    Article  CAS  Google Scholar 

  64. Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539

    Article  CAS  Google Scholar 

  65. Snyder, A. W. and Love, J. D. (1983). Optical waveguide theory. Chapman and Hall, London

    Google Scholar 

  66. Parriaux, O. and Voirin, G. (1990). Plasmon wave versus dielectric waveguiding for surface wave sensing. Sens. Actuators A 23, 1137–1141

    Article  Google Scholar 

  67. Reather, H. (1983). Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, Vol. 111, Springer, Berlin

    Google Scholar 

  68. Nylander, C., Liedberg, B., and Lind, T. (1982). Gas detection by means of surface plasmons resonance. Sens. Actuators 3, 79–88

    Article  CAS  Google Scholar 

  69. Liedberg, B., Nylander, C., and Lundstro¨m, I. (1983). Surface plasmons resonance for gas detection and biosensing. Sens. Actuators 4, 299–304

    Article  CAS  Google Scholar 

  70. Matsubara, K., Kawata, S., and Minami, S. (1988). Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27, 1160–1163

    Article  CAS  Google Scholar 

  71. Liedberg, B., Lundstrom, I., and Stenberg, E. (1993). Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B 11, 63–72

    Article  Google Scholar 

  72. Zhang, L. M. and Uttamchandani, D. (1988). Optical chemical sensing employing surface plasmon resonance. Electron. Lett. 23, 1469–1470

    Article  Google Scholar 

  73. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Rönnberg, I., et al (1991). Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–627

    CAS  Google Scholar 

  74. Löfås, S., Malmqvist, M., Rönnberg, I., Stenberg, E., Liedberg, B., and Lundström, I. (1991). Bioanalysis with surface plasmon resonance. Sens. Actuators B 5, 79–84

    Article  Google Scholar 

  75. Hutley, M. C. (1982). Diffration gratings. Academic Press, London

    Google Scholar 

  76. Hutley, M. C. (1982). Diffration gratings, Academic Press, London

    Google Scholar 

  77. Raether, H. (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin

    Google Scholar 

  78. Moharam, M. G. and Gaylord, T. K. (1986). Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am A. 3, 1780–1787

    Article  CAS  Google Scholar 

  79. Chandezon, J., Dupuis, M. T., Cornet, G., and Maystre, D. (1982). Multicoated gratings: a differential formalism applicable an the entire optical region. J. Opt. Soc. Am. 72, 839–846

    Article  Google Scholar 

  80. Cullen, D. C., Brown, R. G., and Lowe, C. R. (1987). Detection of immunocomplex formation via surface plasmon resonance on goldcoated diffraction gratings. Biosensors 3, 211–225

    Article  CAS  Google Scholar 

  81. Cullen, D. C. and Lowe, C. R. (1990). A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor interface. Sens. Actuators B 1, 576–579

    Article  Google Scholar 

  82. Vukusic, P. S., Bryan-Brown, G. P., and Sambles, J. R. (1992). Surface plasmons resonance on grating as novel means for gas sensing. Sens. Actuators B 8, 155–160

    Article  Google Scholar 

  83. Jory, M. J., Vukusic, P. S., and Sambles, J. R. (1994). Development of a prototype gas sensor using surface plasmon resonance on gratings. Sens. Actuators B 17, 1203–1209

    Article  Google Scholar 

  84. Jorgenson, R. C. and Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213–220

    Article  CAS  Google Scholar 

  85. Jorgenson, R. C. and Yee, S. S. (1994). Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor. Sens. Actuators A 43, 44–48

    Article  Google Scholar 

  86. Trouillet, A., Ronot-Trioli, C., Veillas, C., and Gagnaire, H. (1996). Chemical sensing by surface plasmon resonance in a multimode optical fibre. Pure Appl. Opt. 5, 227–237

    Article  CAS  Google Scholar 

  87. Ronot-Trioli, C., Trouillet, A., Veillas, C., and Gagnaire, H. (1996). Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor. Sens. Actuators A 54, 589–593

    Article  Google Scholar 

  88. Dessy, R. E. and Bender, W. J. (1994). Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition. Anal. Chem. 66, 963–970

    Article  Google Scholar 

  89. Homola, J. (1995). Optical fiber sensor based on surface plasmon excitation, Second European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 1994. Sens. Actuators B 29, 401–405

    Article  Google Scholar 

  90. Homola, J. and Slavik, R. (1996). Fibre-optic sensor based on surface plasmon resonance. Electron. Lett. 32, 480–482

    Article  CAS  Google Scholar 

  91. Tubb, A. J. C., Payne, F. P., and Millington, R. B. (1997). C. R. Lowe, Singlemode optical fiber surface plasma wave chemical sensor. Sens. Actuators B 41, 71–79

    Article  Google Scholar 

  92. Homola, J., Tyroky, J. C., Skalsky, M., Hradilova, J., and Kola´r’ ova´P. (1997). A surface plasmon resonance based integrated optical sensor. Sens. Actuators B 38–39, 286–290

    Article  Google Scholar 

  93. Lavers, C. R. and Wilkinson, J. S. (1994). A waveguide-coupled surface plasmon sensor for an aqueous environment. Sens. Actuators B 22, 75–81

    Article  Google Scholar 

  94. Harris, R. D. and Wilkinson, J. S. (1995). Waveguide surface plasmon resonance sensors. Sens. Actuators B 29, 261–267

    Article  Google Scholar 

  95. Mouvet, C., Harris, R. D., Maciag, C., Luff, B. J., Wilkinson, J. S., Piehler, J., Brecht, A.,   Gauglitz, G., Abuknesha, R., and Ismail, G. (1997). Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338, 109–117

    Article  CAS  Google Scholar 

  96. Ctyroky, J., Homola, J., and Skalsky, M. (1997). Tuning of spectral operation range of a waveguide surface plasmon resonance sensor. Electron. Lett. 33, 1246–1248

    Article  CAS  Google Scholar 

  97. Weiss, M. N., Srivastava, R., Groger, H., Lo, P., and Luo, S. F. (1996). A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens. Actuators A 51, 211–217

    Google Scholar 

  98. Weiss, M. N., Srivastava, R., and Groger, H. (1996). Experimental investigation of a surface plasmon-based integrated-optic humidity sensor. Electron. Lett. 32, 842–843

    Article  CAS  Google Scholar 

  99. Bender, W. J. H., Dessy, R. E., Miller, M. S., and Claus, R. O. (1994). Feasibility of a chemical microsensor based on surface plasmon resonance of fiber optics modified by multilayer vapor deposition. Anal. Chem. 66, 963–970

    Article  CAS  Google Scholar 

  100. Kooyman, R. P. H., Kolkman, H., van Gent, J., and Greve, J. (1988). Surface plasmon resonance immunosensors: sensitivity considerations. Anal. Chim. Acta 213, 35–45

    Article  CAS  Google Scholar 

  101. Yeatman, E. M. (1996). Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens. Bioelectron. 11, 635–649

    Article  CAS  Google Scholar 

  102. Homola, J. (1997). On the sensitivity of surface-plasmon resonance sensors with spectral interrogation. Sens. Actuators B 41, 207–211

    Article  Google Scholar 

  103. Homola, J., Koudela, I., and Yee, S. (1999). Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators B 54, 16–24

    Article  Google Scholar 

  104. Edwards, P. R. and Leatherbarrow, R. J. (1997). Determination of association rate constants by an optical biosensor using initial rate analysis. Anal. Biochem. 246, 1–6

    Article  CAS  Google Scholar 

  105. Vijayendran, R. A., Ligler, F. S., and Leckband, D. E. (1999). A computational reaction-diffusion model for the analysis of transport limited kinetics. Anal. Chem.71, 5405–5412

    Article  CAS  Google Scholar 

  106. Rich, R. L. and Myszka, D. G. (2002). Survey of the year 2001 commercial optical biosensor literature. J. Mol. Recognit. 15, 352–376

    Article  CAS  Google Scholar 

  107. Severs, A. H. and Schasfoort, R. B. M. (1993). Enhanced surface plasmon resonance inhibition test (ESPRIT). using latex particles. Biosens. Bioelectron. 8, 365–370

    Article  CAS  Google Scholar 

  108. Leung, P. T., Pollard-Knight, D., Malan, G. P., and Finlan, M. F. (1994). Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor. Sens. Actuators B 22, 175–180

    Article  Google Scholar 

  109. Owen, V. (1997). Real-time optical immunosensors – a commercial reality, Biosens. Bioelectron. 12, i–ii

    Article  Google Scholar 

  110. Berger, C. E. H., Baumer, T. A. M., Kooyman, R. P. H., and Greve, J. (1998). Surface plasmon resonance multisensing. Anal. Chem. 70, 703–706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Willander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willander, M., Al-Hilli, S. (2009). Analysis of Biomolecules Using Surface Plasmons. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics